
Technical Introduction to OpenEXR

Last Update: 04/24/07

OpenEXR  is  an  open-source  high-dynamic-range  image  file  format  that  was  developed  by 
Industrial Light & Magic.  This document presents a brief overview of OpenEXR and explains concepts 
that are specific to this format.

Table of Contents

Features of OpenEXR.................................................................................................................................2
Overview of the OpenEXR File Format.....................................................................................................3

Definitions and Terminology.................................................................................................................3
File Structure.........................................................................................................................................8
Data Compression...............................................................................................................................10

Luminance/Chroma Images......................................................................................................................11
The HALF Data Type................................................................................................................................12
What's in the Numbers?............................................................................................................................12
Recommendations.....................................................................................................................................12

RGB Color...........................................................................................................................................12
CIE XYZ Color...................................................................................................................................13
Channel Names....................................................................................................................................13
Standard Attributes..............................................................................................................................13

Credits.......................................................................................................................................................14

1



Features of OpenEXR

Starting in 1999, Industrial Light & Magic developed OpenEXR, a high-dynamic-range image file format 
for use in digital visual effects production.  In early 2003, after using and refining the file format for two 
years, ILM released OpenEXR as an open-source C++ library.  A unique combination of features makes 
OpenEXR a good fit for high-quality image processing and storage applications:

• high dynamic range 

Pixel  data are stored as 16-bit or  32-bit  floating-point  numbers.  With 16 bits,  the representable 
dynamic range is significantly higher than the range of most image capture devices: 10

9
 or 30 f-

stops  without  loss of  precision,  and an additional  10 f-stops at  the low end with some loss  of 
precision. Most 8-bit file formats have around 7 to 10 stops. 

• good color resolution 

with  16-bit  floating-point  numbers,  color  resolution  is  1024  steps  per  f-stop,  as  opposed  to 
somewhere around 20 to  70 steps per  f-stop for  most  8-bit  file  formats.  Even  after  significant 
processing (e.g., extensive color correction) images tend to show no noticeable color banding. 

• compatible with graphics hardware 

The 16-bit floating-point data format is fully compatible with the 16-bit frame-buffer data format 
used  in  some  new  graphics  hardware.  Images  can  be  transferred  back  and  forth  between  an 
OpenEXR file and a 16-bit floating-point frame buffer without losing data. 

• lossless and lossy data compression 

Most of the data compression methods currently implemented in OpenEXR are lossless; repeatedly 
compressing  and  uncompressing  an  image  does  not  change  the  image  data.  With  the  lossless 
compression methods, photographic images with significant amounts of film grain tend to shrink to 
somewhere between 35 and 55 percent of their uncompressed size. OpenEXR also supports lossy 
compression, which tends to shrink image files more than lossless compression, but doesn't preserve 
the image data exactly. New lossless and lossy compression schemes can be added in the future. 

• arbitrary image channels 

OpenEXR images can contain an arbitrary number and combination of image channels, for example 
red, green, blue, and alpha; luminance and sub-sampled chroma channels; depth, surface normal 
directions, or motion vectors. 

• scan-line and tiled images, multiresolution images 

Pixels in an OpenEXR file can be stored either as scan lines or as tiles. Tiled image files allow 
random-access to rectangular sub-regions of an image. Multiple versions of a tiled image, each with 
a different resolution, can be stored in a single multiresolution OpenEXR file. 

Multiresolution images, often called "mipmaps" or "ripmaps", are commonly used as texture maps 
in 3D rendering programs to accelerate filtering during texture lookup, or for operations like stereo 
image matching. Tiled multiresultion images are also useful for implementing fast zooming and 
panning in programs that interactively display very large images. 

• ability to store additional data 

Often it is necessary to annotate images with additional data; for example, color timing information, 
process  tracking  data,  or  camera  position  and  view  direction.  OpenEXR  allows  storing  of  an 
arbitrary  number  of  extra  attributes,  of  arbitrary  type,  in  an  image  file.  Software  that  reads 
OpenEXR files ignores attributes it does not understand. 

2



• easy-to-use C++ and C programming interfaces 

In order to make writing and reading OpenEXR files easy, the file format was designed together 
with a C++ programming interface. Two levels of access to image files are provided: a fully general 
interface  for  writing  and  reading  files  with  arbitrary sets  of  image  channels,  and  a  specialized 
interface for the most common case (red, green, blue, and alpha channels, or some subset of those). 
Additionally,  a  C-callable  version  of  the  programming  interface  supports  reading  and  writing 
OpenEXR files from programs written in C. 

Many  application  programs  expect  image  files  to  be  scan-line  based.  With  the  OpenEXR 
programming interface, applications that cannot handle tiled images can treat all OpenEXR files as 
if they were scan-line based; the interface automatically converts tiles to scan lines. 

The C++ and C interfaces are implemented in the open-source IlmImf library. 

• fast multi-threaded file reading and writing

The IlmImf library supports multi-threaded reading or writing of an OpenEXR image file: while one 
thread performs low-level  file  input  or  output,  multiple other  threads simultaneously encode or 
decode individual pieces of the file.

• portability 

The OpenEXR file format is hardware and operating system independent. While implementing the 
C and C++ programming interfaces, an effort was made to use only language features and library 
functions that comply with the C and C++ ISO standards. 

Overview of the OpenEXR File Format

Definitions and Terminology

• Pixel space is a 2D coordinate system with x increasing from left to right and y increasing from top to 
bottom. Pixels are data samples, taken at integer coordinate locations in pixel space. 

• The boundaries of an OpenEXR image are given as an axis-parallel rectangular region in pixel space, 
the display window. The display window is defined by the positions of the pixels in the upper left and 
lower right corners, (xmin, ymin) and (xmax, ymax). 

• An OpenEXR file may not have pixel data for all the pixels in the display window, or the file may have 
pixel data beyond the boundaries of the display window. The region for which pixel data are available 
is defined by a second axis-parallel rectangle in pixel space, the data window. 

Examples: 

• Assume that  we are producing a movie with a  resolution of  1920 by 1080 pixels.  The display 
window for all frames of the movie is (0, 0) - (1919, 1079). For most images, in particular finished 
frames that will be recorded on film, the data window is the same as the display window, but for 
some images that  are used in producing the finished frames,  the data window differs  from the 
display window. 

• For a background plate that will be heavily post-processed, extra pixels, beyond the edge of the film 
frame, are recorded and the data window is set to (-100, -100) - (2019, 1179). The extra pixels are 
not normally displayed. Their existence allows operations such as large-kernel blurs or simulated 
camera shake to avoid edge artifacts. 

3



• While tweaking a computer-generated element, an artist repeatedly renders the same frame. To save 
time, the artist renders only a small region of interest close to the center of the image. The data 
window of the image is set to (1000, 400) - (1400, 800). When the image is displayed, the display 
program fills the area outside of the data window with some default color. 

• Every OpenEXR image contains one or more image channels. Each channel has a name, a data type, 
and x and y sampling rates. 

The channel's name is a text string, for example "R", "Z" or "yVelocity". The name tells programs that 
read the image file how to interpret the data in the channel. 

4



For a few channel names, interpretation of the data is predefined: 

name interpretation 

R red intensity

G green intensity

B blue intensity

A alpha/opacity:  0.0  means  the  pixel  is  transparent;  1.0  means  the  pixel  is 
opaque. By convention, all color channels are premultiplied by alpha, so that 
"foreground + (1-alpha) × background" performs a correct "over" operation. 

Three channel data types are currently supported: 

type name description

HALF 16-bit floating-point numbers; for regular image data. (see The HALF Data 
Type, on page 13) 

FLOAT 32-bit IEEE-754 floating-point numbers; used where the range or precision of 
16-bit number is not sufficient, for example, depth channels. 

UINT 32-bit unsigned integers; for discrete per-pixel data such as object identifiers. 

The channel's x and y sampling rates, sx and sy, determine for which of the pixels in the image's data 
window data are stored in the file: Data for a pixel at pixel space coordinates (x, y) are stored only if

x mod sx = 0

and

y mod sy = 0. 

For RGBA (red, green, blue, alpha) images, sx and sy are 1 for all channels, and each channel contains 
data for every pixel. For other types of images, some channels may be sub-sampled. For example, in 
images with one luminance channel, Y, and two croma channels, RY and BY, sx and sy would be 1 for 
the Y channel, but for the RY and BY channels, sx and sy might be set to 2, indicating that chroma data 
are only given for one out of every four pixels. (See also the Luminance/Chroma Images section, on 
page 11.) 

• Many images are generated by a perspective  projection.  We assume that a camera is located at the 
origin, O, of a 3D camera coordinate system. The camera looks along the positive z axis. The positive x 
and y axes correspond to the camera's "left" and "up" directions. The 3D scene is projected onto the 
z = 1 plane. The image recorded by the camera is bounded by a rectangle, the screen window. In pixel 
space, the screen window corresponds to the file's display window. In the file, the size and position of 
the screen window are specified by the x and y coordinates of the window's center, C, and by the 
window's width, W. The screen window's height can be derived from C, W, the display window and the 
pixel aspect ratio. 

5



• In scan-line-based files, the image's pixels are stored in horizontal rows, or scan lines. A file whose data 
window  is  (xmin, ymin) - (xmax, ymax)  contains  ymax - ymin + 1  scan  lines.  Each  scan  line  contains 
xmax - xmin + 1 pixels. 

Scan-line-based files cannot contain multiresolution images. 

• In tiled files, the image is subdivided into an array of smaller rectangles, called tiles. Each tile contains 
px by py pixels. An image whose data window is (xmin, ymin) - (xmax, ymax) contains ceil(w/px) by ceil(h/py) 
tiles, where w and h are the width and height of the data window: 

w = xmax - xmin + 1 

h = ymax - ymin + 1 

The upper left corner of the upper left tile is aligned with the upper left corner of the data window, at 
(xmin, ymin). The rightmost column and the bottom row of tiles may extend outside the data window. If a 
tile contains pixels that are outside the data window, then those extra pixels are discarded when the tile 
is stored in the file. 

6



• A single tiled OpenEXR files may contain multiple versions of the same image, each with a different 
resolution. Each version is called a level. The number of levels in a file and their resolutions depend on 
the file's level mode. Currently, OpenEXR supports three level modes: 

mode name description 

ONE_LEVEL The  file  contains  only  a  single  full-resolution  level.  A  tiled 
ONE_LEVEL file is equivalent to a scan-line-based file; the only 
difference is that pixels are accessed by tile rather than by scan line. 

MIPMAP_LEVELS The file contains multiple versions of the image. Each successive 
level is half the resolution of the previous level in both dimensions. 
The  lowest-resolution  level  contains  only  a  single  pixel.  For 
example, if the first level, with full resolution, contains 16×8 pixels, 
then the file contains four more levels with 8×4, 4×2, 2×1, and 1×1 
pixels respectively. 

RIPMAP_LEVELS Like MIPMAP_LEVELS, but with more levels. The levels include 
all  combinations  of  reducing  the  resolution  of  the  first  level  by 
powers of two independently in both dimensions. For example, if 
the first level contains 4×4 pixels, then the file contains eight more 
levels, with the following resolutions:

2×4 1×4

4×2 2×2 1×2

4×1 2×1 1×1

Levels are identified by level numbers. A level number is a pair of integers, (lx, ly). Level (0,0) is the 
highest-resolution level, with w by h pixels. Level (lx, ly) contains

rf  w

2 l x


 by 

rf  h

2 l y


pixels, where rf(x) is a rounding function, either floor(x) or ceil(x), depending on the file's  level size 
rounding mode (ROUND_DOWN or ROUND_UP). 

MIPMAP_LEVELS files contain only levels where lx = ly. ONE_LEVEL files contain only level (0,0). 

Examples: 

• The levels in a RIPMAP_LEVELS file whose highest-resolution level contains 4 by 4 pixels have 
the following level numbers: 

width

4 2 1

4 (0,0) (1,0) (2,0)

height 2 (0,1) (1,1) (2,1)

1 (0,2) (1,2) (2,2)

In an equivalent MIPMAP_LEVELS file, only levels (0,0), (1,1), and (2,2) are present. 

7



• In a MIPMAP_LEVELS file with a highest-resolution level of 15 by 17 pixels, the resolutions of the 
remaining levels depend on the level size rounding mode: 

rounding mode level  resolutions

ROUND_DOWN 15×17, 7×8, 3×4, 1×2, 1×1

ROUND_UP 15×17, 8×9, 4×5, 2×3, 1×2, 1×1

• In a file with multiple levels, tiles have the same size, regardless of their level. Lower-resolution levels 
contain fewer, rather than smaller, tiles. Within a level,  a tile is identified by a pair of integer  tile  
coordinates, which specify the tile's column and row. The upper left tile has coordinates (0,0). In order 
to identify a tile uniquely in a multiresolution file, both the tile coordinates and the level number are 
needed. 

File Structure

An OpenEXR file has two main parts: the header and the pixels. 

The header is a list of attributes that describe the pixels. An attribute is a named data item of an arbitrary 
type.  To ensure  that  OpenEXR files  written  by  one  program can  be  read  by  other  programs,  certain 
required attributes must be present in all OpenEXR file headers: 

name description 

displayWindow, 
dataWindow

The image's display and data window. 

pixelAspectRatio Width divided by height of a pixel when the image is displayed 
with  the  correct  aspect  ratio.  A pixel's  width  (height)  is  the 
distance  between the  centers  of  two horizontally  (vertically) 
adjacent pixels on the display. 

channels Description of the image channels stored in the file. 

compression Specifies the compression method applied to the pixel data of 
all channels in the file. 

lineOrder Specifies in what order the scan lines in the file are stored in 
the file (increasing Y, decreasing Y, or, for tiled images, also 
random Y). 

screenWindowWidth, 
screenWindowCenter

Describe  the  perspective  projection  that  produced  the  image 
(see page  5). Programs that deal with images as purely two-
dimensional objects may not be able so generate a description 
of  a  perspective  projection.  Those  programs  should  set 
screenWindowWidth to 1, and screenWindowCenter to  (0, 0). 

tileDescription This attribute is required only for tiled files. It specifies the size 
of the tiles, and the file's level mode. 

In addition to the required attributes, a program may place any number of additional attributes in the file's 
header. Often it is necessary to annotate images with additional data, for example color timing information, 
process tracking data, or camera position and view direction. Those data can be packaged as extra attributes 
in the image file's header. 

When a scan-line-based image file is written, the scan lines must be written either in increasing Y order 
(top scan line first) or in decreasing Y order (bottom scan line first). When a scan-line-based file is read, 
random access to the scan lines is possible; the scan lines can be read in any order. Reading the scan lines 
in the same order as they were written causes the file to be read sequentially, without "seek" operations, and 
as fast as possible. 

8



When a tiled image file is written or read, the tiles can be accessed in any order. When a tiled file is written, 
the IlmImf library may buffer and sort the tiles, depending on the file's line order. If the tiles in a file have 
been  sorted  into  a  predictable  sequence,  application  programs reading  the  file  can  avoid  slow "seek" 
operations by reading the tiles sequentially, in the order as they appear in the file. 

For tiled files, line order is interpreted as follows: 

line order description 

INCREASING_Y The tiles for each level are stored in a contiguous block. The levels 
are ordered like this: 

(0, 0) (1, 0) ... (nx-1, 0)

(0, 1) (1, 1) ... (nx-1, 1)

...

(0, ny-1) (1, ny-1) ... (nx-1, ny-1),

where

nx = rf(log2(w)) + 1,

ny = rf(log2(h)) + 1

if the file's level mode is RIPMAP_LEVELS, or

nx = ny = rf(log2(max(w,h)) + 1

if the level mode is MIPMAP_LEVELS, or 

nx = ny = 1 

if the level mode is ONE_LEVEL. 

In each level, the tiles are stored in the following order: 

(0, 0) (1, 0) ... (tx-1, 0)

(0, 1) (1, 1) ... (tx-1, 1)

...

(0, ty-1) (1, ty-1) ... (tx-1, ty-1),

where  tx and ty are  the  number of  tiles  in  the  x  and y direction 
respectively, for that particular level. 

DECREASING_Y Levels are ordered as for INCREASING_Y, but within each level, 
the tiles are stored in this order: 

(0, ty-1) (1, ty-1) ... (tx-1, ty-1),

...

(0, 1) (1, 1) ... (tx-1, 1)

(0, 0) (1, 0) ... (tx-1, 0)

9



RANDOM_Y When a file is written, tiles are not sorted; they are stored in the file 
in the order they are produced by the application program. 

If an application program produces tiles in an essentially random 
order, selecting INCREASSING_Y or DECREASING_Y line order 
may  force  the  IlmImf  library  to  allocate  significant  amounts  of 
memory to buffer tiles until they can be stored in the file in the 
proper order. If memory is scarce, allocating this extra memory can 
be avoided by setting the file's line order to RANDOM_Y. In this 
case the library doesn't buffer and sort tiles; each tile is immediately 
stored in the file. 

Data Compression

OpenEXR  currently  offers  four  different  data  compression  methods,  with  various  speed  versus 
compression  ratio  tradeoffs.  Optionally,  the  pixels  can  be  stored  in  uncompressed  form.  With  fast 
filesystems, uncompressed files can be written and read significantly faster than compressed files. 

Compressing an image with a lossless method preserves the image exactly; the pixel data are not altered. 
Compressing an image with a lossy method preserves the image only approximately; the compressed image 
looks like the original, but the data in the pixels may have changed slightly. 

Supported compression schemes: 

name description 

PIZ 
(lossless)

A wavelet transform is applied to the pixel data, and the result is Huffman-
encoded.  This  scheme tends to  provide  the best  compression ratio  for  the 
types of images that are typically processed at Industrial Light & Magic. Files 
are  compressed  and  decompressed  at  roughly  the  same  speed.  For 
photographic images with film grain, the files are reduced to between 35 and 
55 percent of their uncompressed size.  

PIZ compression works well for scan-line-based files, and also for tiled files 
with large tiles, but small tiles do not shrink much. (PIZ-compressed data start 
with a relatively long header; if the input to the compressor is short, adding 
the header tends to offset any size reduction of the input.) 

ZIP 
(lossless)

Differences between horizontally adjacent pixels are compressed using the 
open source zlib library. ZIP decompression is faster than PIZ decompression, 
but  ZIP compression  is  significantly  slower.  Photographic  images  tend  to 
shrink to between 45 and 55 percent of their uncompressed size.  

Multiresolution files are often used as texture maps for 3D renderers. For this 
application, fast read accesses are usually more important than fast writes, or 
maximum  compression.  For  texture  maps,  ZIP  is  probably  the  best 
compression method. 

RLE 
(lossless)

Differences between horizontally adjacent pixels are run-length encoded. This 
method  is  fast,  and  works  well  for  images  with  large  flat  areas,  but  for 
photographic images, the compressed file size is usually between 60 and 75 
percent of the uncompressed size. 

10



name description 

PXR24 
(lossy)

After reducing 32-bit floating-point data to 24 bits by rounding, differences 
between horizontally adjacent pixels are compressed with zlib, similar to ZIP. 
PXR24  compression  preserves  image  channels  of  type  HALF  and  UINT 
exactly, but the relative error of FLOAT data increases to about 3×10

-5
. This 

compression method works well for depth buffers and similar images, where 
the possible range of values is very large, but where full 32-bit floating-point 
accuracy is not necessary. Rounding improves compression significantly by 
eliminating the pixels' 8 least significant bits, which tend to be very noisy, and 
difficult to compress. 

B44 
(lossy)

Channels of type HALF are split into blocks of  four by four pixels or  32 
bytes.   Each  block  is  then  packed  into  14  bytes,  reducing  the  data  to  44 
percent of  their uncompressed size.   When B44 compression is  applied to 
RGB images in combination with luminance/chroma encoding (see below), 
the size of the compressed pixels is about 22 percent of the size of the original 
RGB data.  Channels of type UINT or FLOAT are  not compressed.

Decoding  is  fast  enough  to  allow  real-time  playback  of  B44-compressed 
OpenEXR image sequences on commodity hardware.

The size of a B44-compressed file depends on the number of pixels in the 
image, but not on the data in the pixels.  All files with the same resolution and 
the same set of channels have the same size.  This can be advantageous for 
systems that support real-time playback of image sequences; the predictable 
file size makes it easier to allocate space on storage media efficiently.

B44A 
(lossy)

Like B44, except for blocks of four by four pixels where all pixels have the 
same value, which are packed into 3 instead of 14 bytes.  For images with 
large uniform areas, B44A produces smaller files than B44 compression.

Luminance/Chroma Images

Encoding images with one luminance and two chroma channels, rather than as RGB data, allows a simple 
but effective form of lossy data compression that is independent of the compression methods listed above. 
The  chroma  channels  can  be  stored  at  lower  resolution  than  the  luminance  channel.  This  leads  to 
significantly smaller files, with only a small reduction in image quality. The specialized RGBA interface in 
the IlmImf library directly supports reading and writing luminance/chroma images. When an application 
program writes an image file, it can choose either RGB or luminance/chroma format. When an image file 
with luminance/chroma data is read, the library automatically converts the pixels back to RGB. 

Given linear RGB data, luminance, Y, is computed as a weighted sum of R, G, and B: 

Y=R × w RG × w GB × w B

The values of the weighting factors, wR, wG, and wB, are derived from the chromaticities of the image's 
primaries and white point. (See the RGB Color section on page 12.) 

Chroma information is stored in two channels, RY and BY, which are computed like this: 

RY= R−Y
Y

BY= B−Y
Y

The RY and BY channels can be low-pass filtered and subsampled without degrading the original image 
very much. The RGBA interface in IlmImf uses vertical and horizontal sampling rates of 2. Even though 

11



the resulting luminance/chroma images contain only half as much data, they usually do not look noticeably 
different from the original RGB images. 

Converting RGB data to luminance/chroma format also allows space-efficient storage of gray-scale images. 
Only the Y channel needs to be stored in the file. The RY and BY channels can be discarded. If the original 
is already a gray-scale image, that is, every pixel's red, green, and blue are equal, then storing only Y 
preserves the image exactly; the Y channel is not subsampled, and the RY and BY channels contain only 
zeroes. 

The HALF Data Type

Image channels of type HALF are stored as 16-bit floating-point numbers. The 16-bit floating-point data 
type is implemented as a C++ class,  half, which was designed to behave as much as possible like the 
standard floating-point data types built into the C++ language. In arithmetic expressions, numbers of type 
half can be mixed freely with float and double numbers; in most cases, conversions to and from half 
happen automatically. 

half numbers  have 1 sign bit,  5  exponent  bits,  and 10 mantissa bits.  The interpretation of  the  sign, 
exponent and mantissa is analogous to IEEE-754 floating-point numbers.  half supports normalized and 
denormalized  numbers,  infinities  and  NANs (Not  A Number).  The range  of  representable  numbers  is 
roughly 6.0×10

-8  
- 6.5×10

4
; numbers smaller than 6.1×10

-5
are denormalized. Conversions from float to 

half round the mantissa to  10 bits;  the 13 least  significant bits  are lost.  Conversions from  half to 
float are lossless; all half numbers are exactly representable as float values. 

The  data  type  implemented  by  class  half  is  identical  to  Nvidia's  16-bit  floating-point  format 
("fp16 / half"). 16-bit data, including infinities and NANs, can be transferred between OpenEXR files 
and Nvidia 16-bit floating-point frame buffers without losing any bits. 

What's in the Numbers?

We store linear values in the RGB 16-bit floating-point numbers. By this we mean that each value is linear 
relative to the amount of light in the depicted scene. This implies that display of images requires some 
processing to account for the non-linear response of a typical display. In its simplest form, this is a power 
function to perform gamma correction. There are many recent papers on the subject of tone mapping to 
represent the high dynamic range of light values on a display. By storing linear data in the file (double the 
number, double the light in the scene), we have the best starting point for these downstream algorithms. 
Also,  most  commercial  renderers  produce  linear  values  (before  gamma is  applied  to  output  to  lower 
precision formats). 

With this linear relationship established, the question remains, What number is white? The convention we 
employ is to determine a middle gray object, and assign it the photographic 18% gray value, or .18 in the 
floating point  scheme. Other  pixel  values can be easily determined from there (a  stop brighter  is  .36, 
another stop is  .72).  The value 1.0 has no special  significance (it  is  not  a  clamping limit,  as in other 
formats); it roughly represents light coming from a 100% reflector (slightly brighter than paper white). But 
there are many brighter pixel values available to represent objects such as fire and highlights. 

The range of normalized 16-bit floats can represent thirty stops of information with 1024 steps per stop. We 
have eighteen and a half stops over middle gray, and eleven and a half below. The denormalized numbers 
provide an additional ten stops with decreasing precision per stop. 

Recommendations

RGB Color

Simply calling the R channel red is not sufficient information to determine accurately the color that should 
be  displayed  for  a  given  pixel  value.  The  IlmImf  library  defines  a  "chromaticities"  attribute,  which 

12



specifies the CIE x,y coordinates for red,  green, blue,  and white; that is, for the RGB triples (1, 0, 0), 
(0, 1, 0), (0, 0, 1), and (1, 1, 1). The x,y coordinates of all possible RGB triples can be derived from the 
chromaticities attribute. If the primaries and white point for a given display are known, a file-to-display 
color transform can correctly be done. The IlmImf library does not perform this transformation; it is left to 
the display software. The chromaticities attribute is optional, and many programs that write OpenEXR omit 
it. If a file doesn't have a chromaticities attribute, display software should assume that the file's primaries 
and the white point match Rec. ITU-R BT.709-3:

 CIE x, y 

red 0.6400, 0.3300

green 0.3000, 0.6000

blue 0.1500, 0.0600

white 0.3127, 0.3290

CIE XYZ Color

In  an  OpenEXR  file  whose  pixels  represent  CIE  XYZ  tristimulus  values,  the  pixels'  X,  Y  and  Z 
components  should  be  stored  in  the  file's  R,  G  and  B  channels.   The  file  header  should  contain  a 
chromaticities attribute with the following values:

 CIE x, y 

red 1, 0

green 0, 1

blue 0, 0

white 1/3, 1/3

Channel Names

An OpenEXR image can have any number of channels with arbitrary names. The specialized RGBA image 
interface assumes that channels with the names "R", "G", "B" and "A" mean red, green, blue and alpha. No 
predefined  meaning has  been assigned to  any other  channels.  However,  for  a  few channel  names we 
recommend the interpretations given in the table below. We expect this table to grow over time as users 
employ OpenEXR for data such as shadow maps, motion-vector fields or images with more than three 
color channels. 

name interpretation 

Y luminance, used either alone, for gray-scale images, or in combination 
with RY and BY for color images. 

RY, BY chroma for luminance/chroma images, see above. 

AR, AG, AB red,  green  and  blue  alpha/opacity,  for  colored  mattes  (required  to 
composite images of objects like colored glass correctly). 

Standard Attributes

By adding attributes to an OpenEXR file, application programs can store arbitrary auxiliary data along with 
the image. In order to make it easier to exchange data between programs written by different people, the 
IlmImf library defines a set of standard attributes for commonly used data, such as colorimetric data (see 

13



RGB Color, above), time and place where an image was recorded, or the owner of an image file's content. 
Whenever possible, application programs should store data in standard attributes, instead of defining their 
own. For a current list of all standard attributes, see the IlmImf library's source code. The list grows over 
time, as OpenEXR users identify new types of data they would like to represent in a standard way. 

Credits

The ILM OpenEXR file format was designed and implemented by Florian Kainz, Wojciech Jarosz, and 
Rod Bogart. The PIZ compression scheme is based on an algorithm by Christian Rouet. Josh Pines helped 
extend the PIZ algorithm for 16-bit and found optimizations for the float-to-half conversions. Drew Hess 
packaged and adapted ILM's internal source code for public release and maintains the OpenEXR software 
distribution. The PXR24 compression method is based on an algorithm written by Loren Carpenter at Pixar 
Animation Studios. 

OpenEXR  was  developed  at  Industrial  Light & Magic,  a  division  of  Lucas  Digital  Ltd.  LLC,  Marin 
County, California. 

14


	Features of OpenEXR
	Overview of the OpenEXR File Format
	Definitions and Terminology
	File Structure
	Data Compression

	Luminance/Chroma Images
	The HALF Data Type
	What's in the Numbers?
	Recommendations
	RGB Color
	CIE XYZ Color
	Channel Names
	Standard Attributes

	Credits

