
Developer’s Guide
0.5.17

Mobius Forensic Toolkit

c©2008,2009,2010,2011,2012,2013 Eduardo Aguiar

2 Mobius Forensic Toolkit — Developer’s Guide

Contents

1 Introduction 1

2 Developing extensions 3

2.1 Opening an extension . 3
2.2 Creating a new extension . 3

3 Datasources 7

3.1 services available . 8

Mobius Forensic Toolkit — Developer’s Guide 3

4 CONTENTS

Mobius Forensic Toolkit — Developer’s Guide

1
Introduction

Nowadays, open source forensic tools are domain specific. Each tool tries to grab a little of the investi-

gation scope, and some do it very well. Unfortunately, they lack integration, and their development is

made harder because of the absence of common code, and therefore of code reuse. Their outputs are not

standardized, and most of them use command line interface.

Mobius Forensic Toolkit is a framework to develop forensic tools. It is written in Python, using

PYGTK and PyCairo. It is very extensible through specialized programs called extensions, and these

programs share services, program environment and have access to a unified case model.

This guide is focused on developing extensions for the Mobius Forensic Toolkit framework. Sample

codes are presented when suitable. It is a work in progress and does not intend to be a complete reference

guide.

Mobius Forensic Toolkit — Developer’s Guide 1

2 Introduction

Mobius Forensic Toolkit — Developer’s Guide

2
Developing extensions

The Mobius Forensic Toolkit is implemented through extensions. Each extension is a separated program

that runs in its own independent namespace. The Extension Builder is an extension that was specifically

made to edit extensions. It is a complete IDE that handles the underlying extensions and services

structure, with code editing capabilities.

To start Extension Builder, click on tools→Extension Builder menu option. A window like the

one shown in figure 2.1 will be opened.

2.1 Opening an extension

After you have started Extension Builder, click on Open menu option or on the corresponding icon in the

toolbar, to open an extension.

Mobius Forensic Toolkit distribution files (.tar.gz, .tar.bz2, or .zip) have a directory named

extensions where you can find all extensions that are distributed inside those packages. Feel free to

open those extensions, and even to create new ones based upon their source codes. In this example, we

have selected all extensions from extensions directory (figure 2.2).

To use an extension you have modified, you must install it using Mobius main window tools option.

2.2 Creating a new extension

As told before, you can open an existing extension, modify its source codes and save it as a new extension.

But you can also start with a fresh new one. Click on New menu option or on the corresponding icon at

toolbar, to create an extension.

Change your extension properties using properties option, and it will open up a dialog (figure 2.3).

Mobius Forensic Toolkit — Developer’s Guide 3

4 Developing extensions

Figure 2.1: Extension Builder running

Mobius Forensic Toolkit — Developer’s Guide

2.2 Creating a new extension 5

Figure 2.2: Extension Builder showing extensions

Mobius Forensic Toolkit — Developer’s Guide

6 Developing extensions

Figure 2.3: Extension Builder properties dialog

Mobius Forensic Toolkit — Developer’s Guide

3
Datasources

Datasources are objects that handle access to data. Each case item has an attribute datasource that

can be assigned by the user and contains information on how to retrieve the data. The figure 3 illustrates

an example on how to use the datasources:

datasource = item . datasource

check i f da tasource i s a v a i l a b l e

i s_ava i l ab l e = gdata . mediator . c a l l (’ datasource . i s−av a i l a b l e ’ , datasource)
print ’ datasource ␣ i s ␣ a v a i l a b l e : ’ , i s_ava i l ab l e

r e t r i e v e metadata

metadata = gdata . mediator . c a l l (’ datasource . r e t r i e v e−metadata ’ , datasource)

for attr_id , attr_name , attr_value in metadata :
print attr_id , attr_name , attr_value

read some by t e s . . .

reader = gdata . mediator . c a l l (’ datasource . get−reader ’ , datasource)
i f reader :

r eader . open ()
data = reader . read (512)
reader . c l o s e ()

ge t datasource path , when a v a i l a b l e

path = gdata . mediator . c a l l (’ datasource . get−path ’ , datasource)

Figure 3.1: using datasources services

Mobius Forensic Toolkit — Developer’s Guide 7

8 Datasources

3.1 services available

• datasource.get-metadata returns a list of tuples containing the attribute ID, attribute name and

attribute value of metadata.

metadata = gdata . mediator . c a l l (’ datasource . r e t r i e v e−metadata ’ , datasource)

for attr_id , attr_name , attr_value in metadata :

print attr_id , attr_name , attr_value

• datasource.get-path returns the datasource’s path, when available. The idea behind this service

is to allow third party tools to have access to the datasources. Note that extensions should not use

this feature, because not every type of datasource has a local path (e.g. remote datasources).

path = gdata . mediator . c a l l (’ datasource . get−path ’ , datasource)

print ’ l o c a l ␣path : ’ , path

• datasource.get-reader returns a reader object, when available, to read data from datasource.

reader = gdata . mediator . c a l l (’ datasource . get−reader ’ , datasource)

i f reader :

r eader . open ()

data = reader . read (512)

reader . c l o s e ()

• datasource.is-available returns True/False whether the datasource is available for reading,

e.g. whether the physical device is attached and ready.

i s_ava i l ab l e = gdata . mediator . c a l l (’ datasource . i s−a v a i l a b l e ’ , datasource)

print ’ datasource ␣ i s ␣ a v a i l a b l e : ’ , i s_ava i l ab l e

Mobius Forensic Toolkit — Developer’s Guide

