
GNU Parallel alternatives

Page 1

NAME
parallel_alternatives - Alternatives to GNU parallel

DIFFERENCES BETWEEN GNU Parallel AND ALTERNATIVES
There are a lot programs with some of the functionality of GNU parallel. GNU parallel strives to
include the best of the
 functionality without sacrificing ease of use.

SUMMARY TABLE
The following features are in some of the comparable tools:

Inputs
 I1. Arguments can be read from stdin
 I2. Arguments can be read from a file
 I3. Arguments can
be read from multiple files
 I4. Arguments can be read from command line
 I5. Arguments can be read
from a table
 I6. Arguments can be read from the same file using #! (shebang)
 I7. Line oriented input
as default (Quoting of special chars not needed)

Manipulation of input
 M1. Composed command
 M2. Multiple arguments can fill up an execution line

M3. Arguments can be put anywhere in the execution line
 M4. Multiple arguments can be put
anywhere in the execution line
 M5. Arguments can be replaced with context
 M6. Input can be treated
as the complete command line

Outputs
 O1. Grouping output so output from different jobs do not mix
 O2. Send stderr (standard error)
to stderr (standard error)
 O3. Send stdout (standard output) to stdout (standard output)
 O4. Order of
output can be same as order of input
 O5. Stdout only contains stdout (standard output) from the
command
 O6. Stderr only contains stderr (standard error) from the command

Execution
 E1. Running jobs in parallel
 E2. List running jobs
 E3. Finish running jobs, but do not start
new jobs
 E4. Number of running jobs can depend on number of cpus
 E5. Finish running jobs, but do
not start new jobs after first failure
 E6. Number of running jobs can be adjusted while running

Remote execution
 R1. Jobs can be run on remote computers
 R2. Basefiles can be transferred
 R3.
Argument files can be transferred
 R4. Result files can be transferred
 R5. Cleanup of transferred files

R6. No config files needed
 R7. Do not run more than SSHD's MaxStartups can handle
 R8.
Configurable SSH command
 R9. Retry if connection breaks occasionally

Semaphore
 S1. Possibility to work as a mutex
 S2. Possibility to work as a counting semaphore

Legend
 - = no
 x = not applicable
 ID = yes

As every new version of the programs are not tested the table may be
 outdated. Please file a
bug-report if you find errors (See REPORTING
 BUGS).

parallel:
 I1 I2 I3 I4 I5 I6 I7
 M1 M2 M3 M4 M5 M6
 O1 O2 O3 O4 O5 O6
 E1 E2 E3 E4 E5 E6
 R1 R2 R3
R4 R5 R6 R7 R8 R9
 S1 S2

xargs:
 I1 I2 - - - - -
 - M2 M3 - - -
 - O2 O3 - O5 O6
 E1 - - - - -
 - - - - - x - - -
 - -

find -exec:
 - - - x - x -
 - M2 M3 - - - -
 - O2 O3 O4 O5 O6
 - - - - - - -
 - - - - - - - - -
 x x

make -j:
 - - - - - - -
 - - - - - -
 O1 O2 O3 - x O6
 E1 - - - E5 -
 - - - - - - - - -
 - -

ppss:
 I1 I2 - - - - I7
 M1 - M3 - - M6
 O1 - - x - -
 E1 E2 ?E3 E4 - -
 R1 R2 R3 R4 - - ?R7 ? ?
 - -

pexec:
 I1 I2 - I4 I5 - -
 M1 - M3 - - M6
 O1 O2 O3 - O5 O6
 E1 - - E4 - E6
 R1 - - - - R6 - - -
 S1 -

xjobs, prll, dxargs, mdm/middelman, xapply, paexec, ladon, jobflow,
 ClusterSSH: TODO - Please file
a bug-report if you know what features
 they support (See REPORTING BUGS).

DIFFERENCES BETWEEN xargs AND GNU Parallel
xargs offers some of the same possibilities as GNU parallel.

xargs deals badly with special characters (such as space, \, ' and
 "). To see the problem try this:

GNU Parallel alternatives

Page 2

 touch important_file
 touch 'not important_file'
 ls not* | xargs rm
 mkdir -p "My brother's 12\" records"
 ls | xargs rmdir
 touch 'c:\windows\system32\clfs.sys'
 echo 'c:\windows\system32\clfs.sys' | xargs ls -l

You can specify -0, but many input generators are not
 optimized for using NUL as separator but are
optimized for newline as separator. E.g head, tail, awk, ls, echo, sed, tar -v, perl (-0 and \0 instead
of \n), locate
 (requires using -0), find (requires using -print0), grep
 (requires user to use -z or -Z),
sort (requires using -z).

GNU parallel's newline separation can be emulated with:

cat | xargs -d "\n" -n1 command

xargs can run a given number of jobs in parallel, but has no
 support for running number-of-cpu-cores
jobs in parallel.

xargs has no support for grouping the output, therefore output may
 run together, e.g. the first half of a
line is from one process and
 the last half of the line is from another process. The example Parallel
grep cannot be done reliably with xargs because of
 this. To see this in action try:

 parallel perl -e '\$a=\"1{}\"x10000000\;print\ \$a,\"\\n\"' '>' {} \
 ::: a b c d e f
 ls -l a b c d e f
 parallel -kP4 -n1 grep 1 > out.par ::: a b c d e f
 echo a b c d e f | xargs -P4 -n1 grep 1 > out.xargs-unbuf
 echo a b c d e f | \
 xargs -P4 -n1 grep --line-buffered 1 > out.xargs-linebuf
 echo a b c d e f | xargs -n1 grep 1 > out.xargs-serial
 ls -l out*
 md5sum out*

Or try this:

 slow_seq() {
 seq "$@" |
 perl -ne '$|=1; for(split//){ print; select($a,$a,$a,0.100);}'
 }
 export -f slow_seq
 seq 5 | xargs -n1 -P0 -I {} bash -c 'slow_seq {}'
 seq 5 | parallel -P0 slow_seq {}

xargs has no support for keeping the order of the output, therefore
 if running jobs in parallel using
xargs the output of the second
 job cannot be postponed till the first job is done.

xargs has no support for running jobs on remote computers.

xargs has no support for context replace, so you will have to create the
 arguments.

If you use a replace string in xargs (-I) you can not force xargs to use more than one argument.

Quoting in xargs works like -q in GNU parallel. This means
 composed commands and redirection
require using bash -c.

 ls | parallel "wc {} >{}.wc"
 ls | parallel "echo {}; ls {}|wc"

GNU Parallel alternatives

Page 3

becomes (assuming you have 8 cores)

 ls | xargs -d "\n" -P8 -I {} bash -c "wc {} >{}.wc"
 ls | xargs -d "\n" -P8 -I {} bash -c "echo {}; ls {}|wc"

DIFFERENCES BETWEEN find -exec AND GNU Parallel
find -exec offer some of the same possibilities as GNU parallel.

find -exec only works on files. So processing other input (such as
 hosts or URLs) will require creating
these inputs as files. find
 -exec has no support for running commands in parallel.

DIFFERENCES BETWEEN make -j AND GNU Parallel
make -j can run jobs in parallel, but requires a crafted Makefile
 to do this. That results in extra quoting
to get filename containing
 newline to work correctly.

make -j computes a dependency graph before running jobs. Jobs run
 by GNU parallel does not
depend on eachother.

(Very early versions of GNU parallel were coincidently implemented
 using make -j).

DIFFERENCES BETWEEN ppss AND GNU Parallel
ppss is also a tool for running jobs in parallel.

The output of ppss is status information and thus not useful for
 using as input for another command.
The output from the jobs are put
 into files.

The argument replace string ($ITEM) cannot be changed. Arguments must
 be quoted - thus
arguments containing special characters (space '"&!*)
 may cause problems. More than one argument
is not supported. File
 names containing newlines are not processed correctly. When reading
 input
from a file null cannot be used as a terminator. ppss needs
 to read the whole input file before starting
any jobs.

Output and status information is stored in ppss_dir and thus requires
 cleanup when completed. If the
dir is not removed before running ppss again it may cause nothing to happen as ppss thinks the
 task
is already done. GNU parallel will normally not need cleaning
 up if running locally and will only need
cleaning up if stopped
 abnormally and running remote (--cleanup may not complete if
 stopped
abnormally). The example Parallel grep would require extra
 postprocessing if written using ppss.

For remote systems PPSS requires 3 steps: config, deploy, and
 start. GNU parallel only requires one
step.

EXAMPLES FROM ppss MANUAL

Here are the examples from ppss's manual page with the equivalent
 using GNU parallel:

1 ./ppss.sh standalone -d /path/to/files -c 'gzip '

1 find /path/to/files -type f | parallel gzip

2 ./ppss.sh standalone -d /path/to/files -c 'cp "$ITEM" /destination/dir '

2 find /path/to/files -type f | parallel cp {} /destination/dir

3 ./ppss.sh standalone -f list-of-urls.txt -c 'wget -q '

3 parallel -a list-of-urls.txt wget -q

4 ./ppss.sh standalone -f list-of-urls.txt -c 'wget -q "$ITEM"'

4 parallel -a list-of-urls.txt wget -q {}

5 ./ppss config -C config.cfg -c 'encode.sh ' -d /source/dir -m
 192.168.1.100 -u ppss -k ppss-key.key
-S ./encode.sh -n nodes.txt -o
 /some/output/dir --upload --download ; ./ppss deploy -C config.cfg ;

GNU Parallel alternatives

Page 4

./ppss start -C config

5 # parallel does not use configs. If you want a different username put it in nodes.txt: user@hostname

5 find source/dir -type f | parallel --sshloginfile nodes.txt --trc {.}.mp3 lame -a {} -o {.}.mp3 --preset
standard --quiet

6 ./ppss stop -C config.cfg

6 killall -TERM parallel

7 ./ppss pause -C config.cfg

7 Press: CTRL-Z or killall -SIGTSTP parallel

8 ./ppss continue -C config.cfg

8 Enter: fg or killall -SIGCONT parallel

9 ./ppss.sh status -C config.cfg

9 killall -SIGUSR2 parallel

DIFFERENCES BETWEEN pexec AND GNU Parallel
pexec is also a tool for running jobs in parallel.

EXAMPLES FROM pexec MANUAL

Here are the examples from pexec's info page with the equivalent
 using GNU parallel:

1 pexec -o sqrt-%s.dat -p "$(seq 10)" -e NUM -n 4 -c -- \
 'echo "scale=10000;sqrt($NUM)" | bc'

1 seq 10 | parallel -j4 'echo "scale=10000;sqrt({})" | bc > sqrt-{}.dat'

2 pexec -p "$(ls myfiles*.ext)" -i %s -o %s.sort -- sort

2 ls myfiles*.ext | parallel sort {} ">{}.sort"

3 pexec -f image.list -n auto -e B -u star.log -c -- \
 'fistar $B.fits -f 100 -F id,x,y,flux -o $B.star'

3 parallel -a image.list \
 'fistar {}.fits -f 100 -F id,x,y,flux -o {}.star' 2>star.log

4 pexec -r *.png -e IMG -c -o - -- \
 'convert $IMG ${IMG%.png}.jpeg ; "echo $IMG: done"'

4 ls *.png | parallel 'convert {} {.}.jpeg; echo {}: done'

5 pexec -r *.png -i %s -o %s.jpg -c 'pngtopnm | pnmtojpeg'

5 ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {}.jpg'

6 for p in *.png ; do echo ${p%.png} ; done | \
 pexec -f - -i %s.png -o %s.jpg -c 'pngtopnm | pnmtojpeg'

6 ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {.}.jpg'

7 LIST=$(for p in *.png ; do echo ${p%.png} ; done)
 pexec -r $LIST -i %s.png -o %s.jpg -c 'pngtopnm |
pnmtojpeg'

7 ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {.}.jpg'

8 pexec -n 8 -r *.jpg -y unix -e IMG -c \
 'pexec -j -m blockread -d $IMG | \
 jpegtopnm | pnmscale 0.5 |
pnmtojpeg | \
 pexec -j -m blockwrite -s th_$IMG'

8 Combining GNU parallel and GNU sem.

8 ls *jpg | parallel -j8 'sem --id blockread cat {} | jpegtopnm |' \
 'pnmscale 0.5 | pnmtojpeg | sem --id
blockwrite cat > th_{}'

GNU Parallel alternatives

Page 5

8 If reading and writing is done to the same disk, this may be
 faster as only one process will be either
reading or writing:

8 ls *jpg | parallel -j8 'sem --id diskio cat {} | jpegtopnm |' \
 'pnmscale 0.5 | pnmtojpeg | sem --id diskio
cat > th_{}'

DIFFERENCES BETWEEN xjobs AND GNU Parallel
xjobs is also a tool for running jobs in parallel. It only supports
 running jobs on your local computer.

xjobs deals badly with special characters just like xargs. See
 the section DIFFERENCES BETWEEN
xargs AND GNU Parallel.

Here are the examples from xjobs's man page with the equivalent
 using GNU parallel:

1 ls -1 *.zip | xjobs unzip

1 ls *.zip | parallel unzip

2 ls -1 *.zip | xjobs -n unzip

2 ls *.zip | parallel unzip >/dev/null

3 find . -name '*.bak' | xjobs gzip

3 find . -name '*.bak' | parallel gzip

4 ls -1 *.jar | sed 's/\(.*\)/\1 > \1.idx/' | xjobs jar tf

4 ls *.jar | parallel jar tf {} '>' {}.idx

5 xjobs -s script

5 cat script | parallel

6 mkfifo /var/run/my_named_pipe;
 xjobs -s /var/run/my_named_pipe &
 echo unzip 1.zip >>
/var/run/my_named_pipe;
 echo tar cf /backup/myhome.tar /home/me >> /var/run/my_named_pipe

6 mkfifo /var/run/my_named_pipe;
 cat /var/run/my_named_pipe | parallel &
 echo unzip 1.zip >>
/var/run/my_named_pipe;
 echo tar cf /backup/myhome.tar /home/me >> /var/run/my_named_pipe

DIFFERENCES BETWEEN prll AND GNU Parallel
prll is also a tool for running jobs in parallel. It does not
 support running jobs on remote computers.

prll encourages using BASH aliases and BASH functions instead of
 scripts. GNU parallel supports
scripts directly, functions if they
 are exported using export -f, and aliases if using env_parallel.

prll generates a lot of status information on stderr (standard
 error) which makes it harder to use the
stderr (standard error) output
 of the job directly as input for another program.

Here is the example from prll's man page with the equivalent
 using GNU parallel:

 prll -s 'mogrify -flip $1' *.jpg
 parallel mogrify -flip ::: *.jpg

DIFFERENCES BETWEEN dxargs AND GNU Parallel
dxargs is also a tool for running jobs in parallel.

dxargs does not deal well with more simultaneous jobs than SSHD's
 MaxStartups. dxargs is only
built for remote run jobs, but does not
 support transferring of files.

DIFFERENCES BETWEEN mdm/middleman AND GNU Parallel
middleman(mdm) is also a tool for running jobs in parallel.

GNU Parallel alternatives

Page 6

Here are the shellscripts of http://mdm.berlios.de/usage.html ported
 to GNU parallel:

 seq 19 | parallel buffon -o - | sort -n > result
 cat files | parallel cmd
 find dir -execdir sem cmd {} \;

DIFFERENCES BETWEEN xapply AND GNU Parallel
xapply can run jobs in parallel on the local computer.

Here are the examples from xapply's man page with the equivalent
 using GNU parallel:

1 xapply '(cd %1 && make all)' */

1 parallel 'cd {} && make all' ::: */

2 xapply -f 'diff %1 ../version5/%1' manifest | more

2 parallel diff {} ../version5/{} < manifest | more

3 xapply -p/dev/null -f 'diff %1 %2' manifest1 checklist1

3 parallel --link diff {1} {2} :::: manifest1 checklist1

4 xapply 'indent' *.c

4 parallel indent ::: *.c

5 find ~ksb/bin -type f ! -perm -111 -print | xapply -f -v 'chmod a+x' -

5 find ~ksb/bin -type f ! -perm -111 -print | parallel -v chmod a+x

6 find */ -... | fmt 960 1024 | xapply -f -i /dev/tty 'vi' -

6 sh <(find */ -... | parallel -s 1024 echo vi)

6 find */ -... | parallel -s 1024 -Xuj1 vi

7 find ... | xapply -f -5 -i /dev/tty 'vi' - - - - -

7 sh <(find ... |parallel -n5 echo vi)

7 find ... |parallel -n5 -uj1 vi

8 xapply -fn "" /etc/passwd

8 parallel -k echo < /etc/passwd

9 tr ':' '\012' < /etc/passwd | xapply -7 -nf 'chown %1 %6' - - - - - - -

9 tr ':' '\012' < /etc/passwd | parallel -N7 chown {1} {6}

10 xapply '[-d %1/RCS] || echo %1' */

10 parallel '[-d {}/RCS] || echo {}' ::: */

11 xapply -f '[-f %1] && echo %1' List | ...

11 parallel '[-f {}] && echo {}' < List | ...

DIFFERENCES BETWEEN AIX apply AND GNU Parallel
apply can build command lines based on a template and arguments -
 very much like GNU parallel.
apply does not run jobs in
 parallel. apply does not use an argument separator (like :::);
 instead the
template must be the first argument.

Here are the examples from

GNU Parallel alternatives

Page 7

https://www-01.ibm.com/support/knowledgecenter/ssw_aix_71/com.ibm.aix.cmds1/apply.htm

1. To obtain results similar to those of the ls command, enter:

 apply echo *
 parallel echo ::: *

2. To compare the file named a1 to the file named b1, and the
 file named a2 to the file named b2,
enter:

 apply -2 cmp a1 b1 a2 b2
 parallel -N2 cmp ::: a1 b1 a2 b2

3. To run the who command five times, enter:

 apply -0 who 1 2 3 4 5
 parallel -N0 who ::: 1 2 3 4 5

4. To link all files in the current directory to the directory /usr/joe, enter:

 apply 'ln %1 /usr/joe' *
 parallel ln {} /usr/joe ::: *

DIFFERENCES BETWEEN paexec AND GNU Parallel
paexec can run jobs in parallel on both the local and remote computers.

paexec requires commands to print a blank line as the last
 output. This means you will have to write a
wrapper for most programs.

paexec has a job dependency facility so a job can depend on another
 job to be executed
successfully. Sort of a poor-man's make.

Here are the examples from paexec's example catalog with the equivalent
 using GNU parallel:

1_div_X_run:

 ../../paexec -s -l -c "`pwd`/1_div_X_cmd" -n +1 <<EOF [...]
 parallel echo {} '|' `pwd`/1_div_X_cmd <<EOF [...]

all_substr_run:

 ../../paexec -lp -c "`pwd`/all_substr_cmd" -n +3 <<EOF [...]
 parallel echo {} '|' `pwd`/all_substr_cmd <<EOF [...]

cc_wrapper_run:

 ../../paexec -c "env CC=gcc CFLAGS=-O2 `pwd`/cc_wrapper_cmd" \
 -n 'host1 host2' \
 -t '/usr/bin/ssh -x' <<EOF [...]
 parallel echo {} '|' "env CC=gcc CFLAGS=-O2 `pwd`/cc_wrapper_cmd" \
 -S host1,host2 <<EOF [...]
 # This is not exactly the same, but avoids the wrapper
 parallel gcc -O2 -c -o {.}.o {} \
 -S host1,host2 <<EOF [...]

toupper_run:

 ../../paexec -lp -c "`pwd`/toupper_cmd" -n +10 <<EOF [...]
 parallel echo {} '|' ./toupper_cmd <<EOF [...]
 # Without the wrapper:

GNU Parallel alternatives

Page 8

 parallel echo {} '| awk {print\ toupper\(\$0\)}' <<EOF [...]

DIFFERENCES BETWEEN map AND GNU Parallel
map sees it as a feature to have less features and in doing so it
 also handles corner cases
incorrectly. A lot of GNU parallel's code
 is to handle corner cases correctly on every platform, so you
will not
 get a nasty surprise if a user for example saves a file called: My
 brother's 12" records.txt

map's example showing how to deal with special characters fails on
 special characters:

 echo "The Cure" > My\ brother\'s\ 12\"\ records

 ls | \
 map 'echo -n `gzip < "%" | wc -c`; echo -n '*100/'; wc -c < "%"' | bc

It works with GNU parallel:

 ls | \
 parallel 'echo -n `gzip < {} | wc -c`; echo -n '*100/'; wc -c < {}' |
bc

And you can even get the file name prepended:

 ls | \
 parallel --tag '(echo -n `gzip < {} | wc -c`'*100/'; wc -c < {}) | bc'

map has no support for grouping. So this gives the wrong results
 without any warnings:

 parallel perl -e '\$a=\"1{}\"x10000000\;print\ \$a,\"\\n\"' '>' {} \
 ::: a b c d e f
 ls -l a b c d e f
 parallel -kP4 -n1 grep 1 > out.par ::: a b c d e f
 map -p 4 'grep 1' a b c d e f > out.map-unbuf
 map -p 4 'grep --line-buffered 1' a b c d e f > out.map-linebuf
 map -p 1 'grep --line-buffered 1' a b c d e f > out.map-serial
 ls -l out*
 md5sum out*

The documentation shows a workaround, but not only does that mix
 stdout (standard output) with
stderr (standard error) it also fails
 completely for certain jobs (and may even be considered less
readable):

 parallel echo -n {} ::: 1 2 3

 map -p 4 'echo -n % 2>&1 | sed -e "s/^/$$:/"' 1 2 3 | sort | cut -f2- -d:

maps replacement strings (% %D %B %E) can be simulated in GNU parallel by putting this in
~/.parallel/config:

 --rpl '%'
 --rpl '%D $_=::shell_quote(::dirname($_));'
 --rpl '%B s:.*/::;s:\.[^/.]+$::;'
 --rpl '%E s:.*\.::'

map cannot handle bundled options: map -vp 0 echo this fails

map does not have an argument separator on the command line, but
 uses the first argument as

GNU Parallel alternatives

Page 9

command. This makes quoting harder which again
 may affect readability. Compare:

 map -p 2 perl\\\ -ne\\\ \\\'/^\\\\S+\\\\s+\\\\S+\\\$/\\\ and\\\ print\\\
\\\$ARGV,\\\"\\\\n\\\"\\\' *

 parallel -q perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' ::: *

map can do multiple arguments with context replace, but not without
 context replace:

 parallel --xargs echo 'BEGIN{'{}'}END' ::: 1 2 3

map does not set exit value according to whether one of the jobs
 failed:

 parallel false ::: 1 || echo Job failed

 map false 1 || echo Never run

map requires Perl v5.10.0 making it harder to use on old systems.

map has no way of using % in the command (GNU Parallel has -I to
 specify another replacement
string than {}).

By design map is option incompatible with xargs, it does not
 have remote job execution, a structured
way of saving results,
 multiple input sources, progress indicator, configurable record
 delimiter (only
field delimiter), logging of jobs run with possibility
 to resume, keeping the output in the same order as
input, --pipe
 processing, and dynamically timeouts.

DIFFERENCES BETWEEN ladon AND GNU Parallel
ladon can run multiple jobs on files in parallel.

ladon only works on files and the only way to specify files is
 using a quoted glob string (such as
*.jpg). It is not possible to
 list the files manually.

As replacement strings it uses FULLPATH DIRNAME BASENAME EXT RELDIR RELPATH

These can be simulated using GNU parallel by putting this in ~/.parallel/config:

 --rpl 'FULLPATH $_=::shell_quote($_);chomp($_=qx{readlink -f $_});'
 --rpl 'DIRNAME $_=::shell_quote(::dirname($_));chomp($_=qx{readlink -f
$_});'
 --rpl 'BASENAME s:.*/::;s:\.[^/.]+$::;'
 --rpl 'EXT s:.*\.::'
 --rpl 'RELDIR $_=::shell_quote($_);chomp(($_,$c)=qx{readlink -f
$_;pwd});s:\Q$c/\E::;$_=::dirname($_);'
 --rpl 'RELPATH $_=::shell_quote($_);chomp(($_,$c)=qx{readlink -f
$_;pwd});s:\Q$c/\E::;'

ladon deals badly with filenames containing " and newline, and it fails for output larger than 200k:

 ladon '*' -- seq 36000 | wc

EXAMPLES FROM ladon MANUAL

It is assumed that the '--rpl's above are put in ~/.parallel/config
 and that it is run under a shell that
supports '**' globbing (such as zsh):

1 ladon "**/*.txt" -- echo RELPATH

1 parallel echo RELPATH ::: **/*.txt

GNU Parallel alternatives

Page 10

2 ladon "~/Documents/**/*.pdf" -- shasum FULLPATH >hashes.txt

2 parallel shasum FULLPATH ::: ~/Documents/**/*.pdf >hashes.txt

3 ladon -m thumbs/RELDIR "**/*.jpg" -- convert FULLPATH -thumbnail 100x100^ -gravity center
-extent 100x100 thumbs/RELPATH

3 parallel mkdir -p thumbs/RELDIR\; convert FULLPATH -thumbnail 100x100^ -gravity center -extent
100x100 thumbs/RELPATH ::: **/*.jpg

4 ladon "~/Music/*.wav" -- lame -V 2 FULLPATH DIRNAME/BASENAME.mp3

4 parallel lame -V 2 FULLPATH DIRNAME/BASENAME.mp3 ::: ~/Music/*.wav

DIFFERENCES BETWEEN jobflow AND GNU Parallel
jobflow can run multiple jobs in parallel.

Just like xargs output from jobflow jobs running in parallel mix
 together by default. jobflow can
buffer into files (placed in
 /run/shm), but these are not cleaned up - not even if jobflow dies

unexpectently. If the total output is big (in the order of RAM+swap)
 it can cause the system to run out
of memory.

jobflow gives no error if the command is unknown, and like xargs
 redirection requires wrapping with
bash -c.

jobflow makes it possible to set ressource limits on the running
 jobs. This can be emulated by GNU
parallel using bash's ulimit:

 jobflow -limits=mem=100M,cpu=3,fsize=20M,nofiles=300 myjob

 parallel 'ulimit -v 102400 -t 3 -f 204800 -n 300 myjob'

EXAMPLES FROM jobflow README

1 cat things.list | jobflow -threads=8 -exec ./mytask {}

1 cat things.list | parallel -j8 ./mytask {}

2 seq 100 | jobflow -threads=100 -exec echo {}

2 seq 100 | parallel -j100 echo {}

3 cat urls.txt | jobflow -threads=32 -exec wget {}

3 cat urls.txt | parallel -j32 wget {}

4 find . -name '*.bmp' | jobflow -threads=8 -exec bmp2jpeg {.}.bmp {.}.jpg

4 find . -name '*.bmp' | parallel -j8 bmp2jpeg {.}.bmp {.}.jpg

DIFFERENCES BETWEEN gargs AND GNU Parallel
gargs can run multiple jobs in parallel.

It caches output in memory. This causes it to be extremely slow when
 the output is larger than the
physical RAM, and can cause the system
 to run out of memory.

See more details on this in man parallel_design.

Output to stderr (standard error) is changed if the command fails.

Here are the two examples from gargs website.

1 seq 12 -1 1 | gargs -p 4 -n 3 "sleep {0}; echo {1} {2}"

GNU Parallel alternatives

Page 11

1 seq 12 -1 1 | parallel -P 4 -n 3 "sleep {1}; echo {2} {3}"

2 cat t.txt | gargs --sep "\s+" -p 2 "echo '{0}:{1}-{2}' full-line: \'{}\'"

2 cat t.txt | parallel --colsep "\\s+" -P 2 "echo '{1}:{2}-{3}' full-line: \'{}\'"

DIFFERENCES BETWEEN orgalorg AND GNU Parallel
orgalorg can run the same job on multiple machines. This is related
 to --onall and --nonall.

orgalorg supports entering the SSH password - provided it is the
 same for all servers. GNU parallel
advocates using ssh-agent
 instead, but it is possible to emulate orgalorg's behavior by
 setting
SSHPASS and by using --ssh "sshpass ssh".

To make the emulation easier, make a simple alias:

 alias par_emul="parallel -j0 --ssh 'sshpass ssh' --nonall --tag
--linebuffer"

If you want to supply a password run:

 SSHPASS=`ssh-askpass`

or set the password directly:

 SSHPASS=P4$$w0rd!

If the above is set up you can then do:

 orgalorg -o frontend1 -o frontend2 -p -C uptime
 par_emul -S frontend1 -S frontend2 uptime

 orgalorg -o frontend1 -o frontend2 -p -C top -bid 1
 par_emul -S frontend1 -S frontend2 top -bid 1

 orgalorg -o frontend1 -o frontend2 -p -er /tmp -n 'md5sum /tmp/bigfile'
-S bigfile
 par_emul -S frontend1 -S frontend2 --basefile bigfile --workdir /tmp
md5sum /tmp/bigfile

orgalorg has a progress indicator for the transferring of a
 file. GNU parallel does not.

DIFFERENCES BETWEEN Rust parallel AND GNU Parallel
Rust parallel focuses on speed. It is almost as fast as xargs. It
 implements a few features from GNU
parallel, but lacks many
 functions. All these fail:

 # Show what would be executed
 parallel --dry-run echo ::: a
 # Read arguments from file
 parallel -a file echo
 # Changing the delimiter
 parallel -d _ echo ::: a_b_c_

These do something different from GNU parallel

 # Read more arguments at a time -n
 parallel -n 2 echo ::: 1 a 2 b
 # -q to protect quoted $ and space
 parallel -q perl -e '$a=shift; print "$a"x10000000' ::: a b c

GNU Parallel alternatives

Page 12

 # Generation of combination of inputs
 parallel echo {1} {2} ::: red green blue ::: S M L XL XXL
 # {= perl expression =} replacement string
 parallel echo '{= s/new/old/ =}' ::: my.new your.new
 # --pipe
 seq 100000 | parallel --pipe wc
 # linked arguments
 parallel echo ::: S M L :::+ small medium large ::: R G B :::+ red green
blue
 # Run different shell dialects
 zsh -c 'parallel echo \={} ::: zsh && true'
 csh -c 'parallel echo \$\{\} ::: shell && true'
 bash -c 'parallel echo \$\({}\) ::: pwd && true'
 # Rust parallel does not start before the last argument is read
 (seq 10; sleep 5; echo 2) | time parallel -j2 'sleep 2; echo'
 tail -f /var/log/syslog | parallel echo

Rust parallel has no remote facilities.

It uses /tmp/parallel for tmp files and does not clean up if
 terminated abrubtly. If another user on the
system uses Rust parallel,
 then /tmp/parallel will have the wrong permissions and Rust parallel
 will
fail. A malicious user can setup the right permissions and
 symlink the output file to one of the user's
files and next time the
 user uses Rust parallel it will overwrite this file.

If /tmp/parallel runs full during the run, Rust parallel does not
 report this, but finishes with success -
thereby risking data loss.

DIFFERENCES BETWEEN Rush AND GNU Parallel
rush (https://github.com/shenwei356/rush) is written in Go and
 based on gargs.

Just like GNU parallel rush buffers in temporary files. But
 opposite GNU parallel rush does not
clean up, if the process
 dies abnormally.

rush has some string manipulations that can be emulated by putting
 this into ~/.parallel/config (/ is
used instead of %, and % is used
 instead of ^ as that is closer to bash's ${var%postfix}):

 --rpl '{:} s:(\.[^/]+)*$::'
 --rpl '{:%([^}]+?)} s:$$1(\.[^/]+)*$::'
 --rpl '{/:%([^}]*?)} s:.*/(.*)$$1(\.[^/]+)*$:$1:'
 --rpl '{/:} s:(.*/)?([^/.]+)(\.[^/]+)*$:$2:'
 --rpl '{@(.*?)} /$$1/ and $_=$1;'

Here are the examples from rush's website with the equivalent
 command in GNU parallel.

EXAMPLES

1. Simple run, quoting is not necessary

 $ seq 1 3 | rush echo {}

 $ seq 1 3 | parallel echo {}

2. Read data from file (`-i`)

 $ rush echo {} -i data1.txt -i data2.txt

 $ cat data1.txt data2.txt | parallel echo {}

GNU Parallel alternatives

Page 13

3. Keep output order (`-k`)

 $ seq 1 3 | rush 'echo {}' -k

 $ seq 1 3 | parallel -k echo {}

4. Timeout (`-t`)

 $ time seq 1 | rush 'sleep 2; echo {}' -t 1

 $ time seq 1 | parallel --timeout 1 'sleep 2; echo {}'

5. Retry (`-r`)

 $ seq 1 | rush 'python unexisted_script.py' -r 1

 $ seq 1 | parallel --retries 2 'python unexisted_script.py'

Use -u to see it is really run twice:

 $ seq 1 | parallel -u --retries 2 'python unexisted_script.py'

6. Dirname (`{/}`) and basename (`{%}`) and remove custom
 suffix (`{^suffix}`)

 $ echo dir/file_1.txt.gz | rush 'echo {/} {%} {^_1.txt.gz}'

 $ echo dir/file_1.txt.gz |
 parallel --plus echo {//} {/} {%_1.txt.gz}

7. Get basename, and remove last (`{.}`) or any (`{:}`) extension

 $ echo dir.d/file.txt.gz | rush 'echo {.} {:} {%.} {%:}'

 $ echo dir.d/file.txt.gz | parallel 'echo {.} {:} {/.} {/:}'

8. Job ID, combine fields index and other replacement strings

 $ echo 12 file.txt dir/s_1.fq.gz |
 rush 'echo job {#}: {2} {2.} {3%:^_1}'

 $ echo 12 file.txt dir/s_1.fq.gz |
 parallel --colsep ' ' 'echo job {#}: {2} {2.} {3/:%_1}'

9. Capture submatch using regular expression (`{@regexp}`)

 $ echo read_1.fq.gz | rush 'echo {@(.+)_\d}'

 $ echo read_1.fq.gz | parallel 'echo {@(.+)_\d}'

10. Custom field delimiter (`-d`)

 $ echo a=b=c | rush 'echo {1} {2} {3}' -d =

 $ echo a=b=c | parallel -d = echo {1} {2} {3}

GNU Parallel alternatives

Page 14

11. Send multi-lines to every command (`-n`)

 $ seq 5 | rush -n 2 -k 'echo "{}"; echo'

 $ seq 5 |
 parallel -n 2 -k \
 'echo {=-1 $_=join"\n",@arg[1..$#arg] =}; echo'

 $ seq 5 | rush -n 2 -k 'echo "{}"; echo' -J ' '

 $ seq 5 | parallel -n 2 -k 'echo {}; echo'

12. Custom record delimiter (`-D`), note that empty records are not used.

 $ echo a b c d | rush -D " " -k 'echo {}'

 $ echo a b c d | parallel -d " " -k 'echo {}'

 $ echo abcd | rush -D "" -k 'echo {}'

 Cannot be done by GNU Parallel

 $ cat fasta.fa
 >seq1
 tag
 >seq2
 cat
 gat
 >seq3
 attac
 a
 cat

 $ cat fasta.fa | rush -D ">" \
 'echo FASTA record {#}: name: {1} sequence: {2}' -k -d "\n"
 # rush fails to join the multiline sequences

 $ cat fasta.fa | (read -n1 ignore_first_char;
 parallel -d '>' --colsep '\n' echo FASTA record {#}: \
 name: {1} sequence: '{=2 $_=join"",@arg[2..$#arg]=}'
)

13. Assign value to variable, like `awk -v` (`-v`)

 $ seq 1 |
 rush 'echo Hello, {fname} {lname}!' -v fname=Wei -v lname=Shen

 $ seq 1 |
 parallel -N0 \
 'fname=Wei; lname=Shen; echo Hello, ${fname} ${lname}!'

 $ for var in a b; do \
 $ seq 1 3 | rush -k -v var=$var 'echo var: {var}, data: {}'; \
 $ done

GNU Parallel alternatives

Page 15

In GNU parallel you would typically do:

 $ seq 1 3 | parallel -k echo var: {1}, data: {2} ::: a b :::: -

If you really want the var:

 $ seq 1 3 |
 parallel -k var={1} ';echo var: $var, data: {}' ::: a b :::: -

If you really want the for-loop:

 $ for var in a b; do
 > export var;
 > seq 1 3 | parallel -k 'echo var: $var, data: {}';
 > done

Contrary to rush this also works if the value is complex like:

 My brother's 12" records

14. Preset variable (`-v`), avoid repeatedly writing verbose replacement strings

 # naive way
 $ echo read_1.fq.gz | rush 'echo {:^_1} {:^_1}_2.fq.gz'

 $ echo read_1.fq.gz | parallel 'echo {:%_1} {:%_1}_2.fq.gz'

 # macro + removing suffix
 $ echo read_1.fq.gz |
 rush -v p='{:^_1}' 'echo {p} {p}_2.fq.gz'

 $ echo read_1.fq.gz |
 parallel 'p={:%_1}; echo $p ${p}_2.fq.gz'

 # macro + regular expression
 $ echo read_1.fq.gz | rush -v p='{@(.+?)_\d}' 'echo {p} {p}_2.fq.gz'

 $ echo read_1.fq.gz | parallel 'p={@(.+?)_\d}; echo $p ${p}_2.fq.gz'

Contrary to rush GNU parallel works with complex values:

 echo "My brother's 12\"read_1.fq.gz" |
 parallel 'p={@(.+?)_\d}; echo $p ${p}_2.fq.gz'

15. Interrupt jobs by `Ctrl-C`, rush will stop unfinished commands and exit.

 $ seq 1 20 | rush 'sleep 1; echo {}'
 ^C

 $ seq 1 20 | parallel 'sleep 1; echo {}'
 ^C

16. Continue/resume jobs (`-c`). When some jobs failed (by
 execution failure, timeout, or
cancelling by user with `Ctrl + C`),
 please switch flag `-c/--continue` on and run again, so that
`rush`
 can save successful commands and ignore them in NEXT run.

GNU Parallel alternatives

Page 16

 $ seq 1 3 | rush 'sleep {}; echo {}' -t 3 -c
 $ cat successful_cmds.rush
 $ seq 1 3 | rush 'sleep {}; echo {}' -t 3 -c

 $ seq 1 3 | parallel --joblog mylog --timeout 2 \
 'sleep {}; echo {}'
 $ cat mylog
 $ seq 1 3 | parallel --joblog mylog --retry-failed \
 'sleep {}; echo {}'

Multi-line jobs:

 $ seq 1 3 | rush 'sleep {}; echo {}; \
 echo finish {}' -t 3 -c -C finished.rush
 $ cat finished.rush
 $ seq 1 3 | rush 'sleep {}; echo {}; \
 echo finish {}' -t 3 -c -C finished.rush

 $ seq 1 3 |
 parallel --joblog mylog --timeout 2 'sleep {}; echo {}; \
 echo finish {}'
 $ cat mylog
 $ seq 1 3 |
 parallel --joblog mylog --retry-failed 'sleep {}; echo {}; \
 echo finish {}'

17. A comprehensive example: downloading 1K+ pages given by
 three URL list files using
`phantomjs save_page.js` (some page
 contents are dynamicly generated by Javascript, so
`wget` does not
 work). Here I set max jobs number (`-j`) as `20`, each job has a max
 running
time (`-t`) of `60` seconds and `3` retry changes
 (`-r`). Continue flag `-c` is also switched on, so
we can continue
 unfinished jobs. Luckily, it's accomplished in one run :)

 $ for f in $(seq 2014 2016); do \
 $ /bin/rm -rf $f; mkdir -p $f; \
 $ cat $f.html.txt | rush -v d=$f -d = \
 'phantomjs save_page.js "{}" > {d}/{3}.html' \
 -j 20 -t 60 -r 3 -c; \
 $ done

GNU parallel can append to an existing joblog with '+':

 $ rm mylog
 $ for f in $(seq 2014 2016); do
 /bin/rm -rf $f; mkdir -p $f;
 cat $f.html.txt |
 parallel -j20 --timeout 60 --retries 4 --joblog +mylog \
 --colsep = \
 phantomjs save_page.js {1}={2}={3} '>' $f/{3}.html
 done

18. A bioinformatics example: mapping with `bwa`, and
 processing result with `samtools`:

 $ ref=ref/xxx.fa
 $ threads=25
 $ ls -d raw.cluster.clean.mapping/* \
 | rush -v ref=$ref -v j=$threads -v p='{}/{%}' \

GNU Parallel alternatives

Page 17

 'bwa mem -t {j} -M -a {ref} {p}_1.fq.gz {p}_2.fq.gz > {p}.sam; \
 samtools view -bS {p}.sam > {p}.bam; \
 samtools sort -T {p}.tmp -@ {j} {p}.bam -o {p}.sorted.bam; \
 samtools index {p}.sorted.bam; \
 samtools flagstat {p}.sorted.bam > {p}.sorted.bam.flagstat; \
 /bin/rm {p}.bam {p}.sam;' \
 -j 2 --verbose -c -C mapping.rush

GNU parallel would use a function:

 $ ref=ref/xxx.fa
 $ export ref
 $ thr=25
 $ export thr
 $ bwa_sam() {
 p="$1"
 bam="$p".bam
 sam="$p".sam
 sortbam="$p".sorted.bam
 bwa mem -t $thr -M -a $ref ${p}_1.fq.gz ${p}_2.fq.gz > "$sam"
 samtools view -bS "$sam" > "$bam"
 samtools sort -T ${p}.tmp -@ $thr "$bam" -o "$sortbam"
 samtools index "$sortbam"
 samtools flagstat "$sortbam" > "$sortbam".flagstat
 /bin/rm "$bam" "$sam"
 }
 $ export -f bwa_sam
 $ ls -d raw.cluster.clean.mapping/* |
 parallel -j 2 --verbose --joblog mylog bwa_sam

Other rush features

rush has:

* awk -v like custom defined variables (-v)

With GNU parallel you would simply simply set a shell variable:

 parallel 'v={}; echo "$v"' ::: foo
 echo foo | rush -v v={} 'echo {v}'

Also rush does not like special chars. So these do not work:

 echo does not work | rush -v v=\" 'echo {v}'
 echo "My brother's 12\" records" | rush -v v={} 'echo {v}'

Whereas the corresponding GNU parallel version works:

 parallel 'v=\"; echo "$v"' ::: works
 parallel 'v={}; echo "$v"' ::: "My brother's 12\" records"

* Exit on first error(s) (-e)

This is called --halt now,fail=1 (or shorter: --halt 2) when
 used with GNU parallel.

* Settable records sending to every command (-n, default 1)

This is also called -n in GNU parallel.

* Practical replacement strings

{:} remove any extension

GNU Parallel alternatives

Page 18

With GNU parallel this can be emulated by:

 parallel --plus echo '{/\..*/}' ::: foo.ext.bar.gz

{^suffix}, remove suffix

With GNU parallel this can be emulated by:

 parallel --plus echo '{%.bar.gz}' ::: foo.ext.bar.gz

{@regexp}, capture submatch using regular expression

With GNU parallel this can be emulated by:

 parallel --rpl '{@(.*?)} /$$1/ and $_=$1;' \
 echo '{@\d_(.*).gz}' ::: 1_foo.gz

{%.}, {%:}, basename without extension

With GNU parallel this can be emulated by:

 parallel echo '{= s:.*/::;s/\..*// =}' ::: dir/foo.bar.gz

And if you need it often, you define a --rpl in $HOME/.parallel/config:

 --rpl '{%.} s:.*/::;s/\..*//'
 --rpl '{%:} s:.*/::;s/\..*//'

Then you can use them as:

 parallel echo {%.} {%:} ::: dir/foo.bar.gz

* Preset variable (macro)

E.g.

 echo foosuffix | rush -v p={^suffix} 'echo {p}_new_suffix'

With GNU parallel this can be emulated by:

 echo foosuffix | parallel --plus 'p={%suffix}; echo
${p}_new_suffix'

Opposite rush GNU parallel works fine if the input contains
 double space, ' and ":

 echo "1'6\" foosuffix" |
 parallel --plus 'p={%suffix}; echo "${p}"_new_suffix'

* Commands of multi-lines

While you can use multi-lined commands in GNU parallel, to
 improve readibilty GNU parallel
discourages the use of multi-line
 commands. In most cases it can be written as a function:

 seq 1 3 | parallel --timeout 2 --joblog my.log 'sleep {}; echo {};
\
 echo finish {}'

Could be written as:

 doit() {
 sleep "$1"
 echo "$1"
 echo finish "$1"
 }
 export -f doit
 seq 1 3 | parallel --timeout 2 --joblog my.log doit

GNU Parallel alternatives

Page 19

The failed commands can be resumed with:

 seq 1 3 |
 parallel --resume-failed --joblog my.log 'sleep {}; echo {};\
 echo finish {}'

DIFFERENCES BETWEEN ClusterSSH AND GNU Parallel
ClusterSSH solves a different problem than GNU parallel.

ClusterSSH opens a terminal window for each computer and using a
 master window you can run the
same command on all the computers. This
 is typically used for administrating several computers that
are almost
 identical.

GNU parallel runs the same (or different) commands with different
 arguments in parallel possibly
using remote computers to help
 computing. If more than one computer is listed in -S GNU parallel
may
 only use one of these (e.g. if there are 8 jobs to be run and one
 computer has 8 cores).

GNU parallel can be used as a poor-man's version of ClusterSSH:

parallel --nonall -S server-a,server-b do_stuff foo bar

DIFFERENCES BETWEEN coshell AND GNU Parallel
coshell only accepts full commands on standard input. Any quoting
 needs to be done by the user.

Commands are run in sh so any bash/tcsh/zsh specific
 syntax will not work.

Output can be buffered by using -d. Output is buffered in memory,
 so big output can cause swapping
and therefore be terrible slow or
 even cause out of memory.

DIFFERENCES BETWEEN spread AND GNU Parallel
spread runs commands on all directories.

It can be emulated with GNU parallel using this Bash function:

 spread() {
 _cmds() {
 perl -e '$"=" && ";print "@ARGV"' "cd {}" "$@"
 }
 parallel $(_cmds "$@")'|| echo exit status $?' ::: */
 }

This works execpt for the --exclude option.

DIFFERENCES BETWEEN pyargs AND GNU Parallel
pyargs deals badly with input containing spaces. It buffers stdout,
 but not stderr. It buffers in RAM. {}
does not work as replacement
 string. It does not support running functions.

pyargs does not support composed commands if run with --lines,
 and fails on pyargs traceroute
gnu.org fsf.org.

Examples

 seq 5 | pyargs -P50 -L seq
 seq 5 | parallel -P50 --lb seq

 seq 5 | pyargs -P50 --mark -L seq
 seq 5 | parallel -P50 --lb \
 --tagstring OUTPUT'[{= $_=$job->replaced()=}]' seq
 # Similar, but not precisely the same
 seq 5 | parallel -P50 --lb --tag seq

GNU Parallel alternatives

Page 20

 seq 5 | pyargs -P50 --mark command
 # Somewhat longer with GNU Parallel due to the special
 # --mark formatting
 cmd="$(echo "command" | parallel --shellquote)"
 wrap_cmd() {
 echo "MARK $cmd $@================================" >&3
 echo "OUTPUT START[$cmd $@]:"
 eval $cmd "$@"
 echo "OUTPUT END[$cmd $@]"
 }
 (seq 5 | env_parallel -P2 wrap_cmd) 3>&1
 # Similar, but not exactly the same
 seq 5 | parallel -t --tag command

 (echo '1 2 3';echo 4 5 6) | pyargs --stream seq
 (echo '1 2 3';echo 4 5 6) | perl -pe 's/\n/ /' |
 parallel -r -d' ' seq
 # Similar, but not exactly the same
 parallel seq ::: 1 2 3 4 5 6

DIFFERENCES BETWEEN concurrently AND GNU Parallel
concurrently runs jobs in parallel.

The output is prepended with the job number, and may be incomplete:

 $ concurrently 'seq 100000' | (sleep 3;wc -l)
 7165

When pretty printing it caches output in memory. Output mixes by using
 test A below wether or not
output is cached.

There seems to be no way of making a template command and have concurrently fill that with
different args. The full commands must
 be given on the command line.

There is also no way of controlling how many jobs should be run in
 parallel at a time - i.e. "number of
jobslots". Instead all jobs are
 simply started in parallel.

Todo
machma. Requires Go >= 1.7.

https://github.com/k-bx/par requires Haskell to work. This limits the
 number of platforms this can work
on.

https://github.com/otonvm/Parallel

https://github.com/flesler/parallel

https://github.com/kou1okada/lesser-parallel

https://github.com/Julian/Verge

https://github.com/amattn/paral

pyargs

TESTING OTHER TOOLS
There are certain issues that are very common on parallelizing
 tools. Here are a few stress tests. Be
warned: If the tool is badly
 coded it may overload you machine.

GNU Parallel alternatives

Page 21

A: Output mixes
Output from 2 jobs should not mix. If the tool does not buffer, output
 will most likely mix.

 #!/bin/bash

 paralleltool=parallel

 cat <<-EOF > mycommand
 #!/bin/bash

 # If a, b, c, d, e, and f mix: Very bad
 perl -e 'print STDOUT "a"x3000_000," "'
 perl -e 'print STDERR "b"x3000_000," "'
 perl -e 'print STDOUT "c"x3000_000," "'
 perl -e 'print STDERR "d"x3000_000," "'
 perl -e 'print STDOUT "e"x3000_000," "'
 perl -e 'print STDERR "f"x3000_000," "'
 echo
 echo >&2
 EOF
 chmod +x mycommand

 # Run 30 jobs in parallel
 seq 30 | $paralleltool -j0 ./mycommand > >(tr -s abcdef) 2> >(tr -s
abcdef >&2)

 # 'a c e' and 'b d f' should always stay together
 # and there should only be a single line per job

B: Output limited by RAM
Some tools cache output in RAM. This makes them extremely slow if the
 output is bigger than
physical memory and crash if the the output is
 bigger than the virtual memory.

 #!/bin/bash

 paralleltool=parallel

 cat <<'EOF' > mycommand
 #!/bin/bash

 # Generate 1 GB output
 yes "`perl -e 'print \"c\"x30_000'`" | head -c 1G
 EOF
 chmod +x mycommand

 # Run 20 jobs in parallel
 # Adjust 20 to be > physical RAM and < free space on /tmp
 seq 20 | time $paralleltool -j0 ./mycommand | wc -c

C: Leaving tmp files at unexpected death
Some tools do not clean up tmp files if they are killed. If the tool
 buffers on disk, they may not clean
up, if they are killed.

GNU Parallel alternatives

Page 22

 #!/bin/bash

 paralleltool=parallel

 ls /tmp >/tmp/before
 seq 10 | $paralleltool sleep &
 pid=$!
 # Give the tool time to start up
 sleep 1
 # Kill it without giving it a chance to cleanup
 kill -9 $!
 # Should be empty: No files should be left behind
 diff <(ls /tmp) /tmp/before

D: Dealing badly with special file names.
It is not uncommon for users to create files like:

 My brother's 12" records cost $$$.txt

Some tools break on this.

 #!/bin/bash

 paralleltool=parallel

 touch "My brother's 12\" records cost \$\$\$.txt"
 ls My*txt | $paralleltool echo

E: Composed commands do not work
Some tools require you to wrap composed commands into bash -c.

 echo bar | $paralleltool echo foo';' echo {}

F: Only one replacement string allowed
Some tools can only insert the argument once.

 echo bar | $paralleltool echo {} foo {}

G: Speed depends on number of words
Some tools become very slow if output lines have many words.

 #!/bin/bash

 paralleltool=parallel

 cat <<-EOF > mycommand
 #!/bin/bash

 # 10 MB of lines with 1000 words
 yes "`seq 1000`" | head -c 10M
 EOF
 chmod +x mycommand

GNU Parallel alternatives

Page 23

 # Run 30 jobs in parallel
 seq 30 | time $paralleltool -j0 ./mycommand > /dev/null

AUTHOR
When using GNU parallel for a publication please cite:

O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login:
 The USENIX Magazine,
February 2011:42-47.

This helps funding further development; and it won't cost you a cent.
 If you pay 10000 EUR you
should feel free to use GNU Parallel without citing.

Copyright (C) 2007-10-18 Ole Tange, http://ole.tange.dk

Copyright (C) 2008,2009,2010 Ole Tange, http://ole.tange.dk

Copyright (C) 2010,2011,2012,2013,2014,2015,2016,2017,2018 Ole Tange,
 http://ole.tange.dk and
Free Software Foundation, Inc.

Parts of the manual concerning xargs compatibility is inspired by
 the manual of xargs from GNU
findutils 4.4.2.

LICENSE
Copyright (C) 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018
 Free Software
Foundation, Inc.

This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU
General Public License as published by
 the Free Software Foundation; either version 3 of the
License, or
 at your option any later version.

This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without
even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
 GNU General Public License for more details.

You should have received a copy of the GNU General Public License
 along with this program. If not,
see <http://www.gnu.org/licenses/>.

Documentation license I
Permission is granted to copy, distribute and/or modify this documentation
 under the terms of the
GNU Free Documentation License, Version 1.3 or
 any later version published by the Free Software
Foundation; with no
 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
 Texts. A
copy of the license is included in the file fdl.txt.

Documentation license II
You are free:

to Share

to copy, distribute and transmit the work

to Remix

to adapt the work

Under the following conditions:

Attribution

You must attribute the work in the manner specified by the author or
 licensor (but not
in any way that suggests that they endorse you or
 your use of the work).

Share Alike

If you alter, transform, or build upon this work, you may distribute
 the resulting work

GNU Parallel alternatives

Page 24

only under the same, similar or a compatible
 license.

With the understanding that:

Waiver

Any of the above conditions can be waived if you get permission from
 the copyright
holder.

Public Domain

Where the work or any of its elements is in the public domain under
 applicable law,
that status is in no way affected by the license.

Other Rights

In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights, or other applicable
 copyright exceptions and
limitations;

The author's moral rights;

Rights other persons may have either in the work itself or in
 how the work is
used, such as publicity or privacy rights.

Notice

For any reuse or distribution, you must make clear to others the
 license terms of this
work.

A copy of the full license is included in the file as cc-by-sa.txt.

DEPENDENCIES
GNU parallel uses Perl, and the Perl modules Getopt::Long,
 IPC::Open3, Symbol, IO::File, POSIX,
and File::Temp. For remote usage
 it also uses rsync with ssh.

SEE ALSO
find(1), xargs(1), make(1), pexec(1), ppss(1), xjobs(1), prll(1), dxargs(1), mdm(1)

