
GnuTLS
Transport Layer Security Library for the GNU system

for version 2.12.2, 8 April 2011

Nikos Mavrogiannopoulos
Simon Josefsson (bug-gnutls@gnu.org)

mailto:bug-gnutls@gnu.org

This manual is last updated 8 April 2011 for version 2.12.2 of GnuTLS.

Copyright c© 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Preface . 1
1.1 Getting Help . 1
1.2 Commercial Support . 1
1.3 Downloading and Installing . 2
1.4 Bug Reports . 3
1.5 Contributing . 3

2 The Library . 5
2.1 General Idea . 6
2.2 Error Handling . 7
2.3 Memory Handling . 7
2.4 Callback Functions . 7

3 Introduction to TLS . 8
3.1 TLS Layers . 8
3.2 The Transport Layer . 9
3.3 The TLS Record Protocol . 9

3.3.1 Encryption Algorithms Used in the Record Layer 10
3.3.2 Compression Algorithms Used in the Record Layer 10
3.3.3 Weaknesses and Countermeasures . 11

3.4 The TLS Alert Protocol . 11
3.5 The TLS Handshake Protocol . 11

3.5.1 TLS Cipher Suites . 12
3.5.2 Priority strings . 12
3.5.3 Client Authentication . 14
3.5.4 Resuming Sessions . 15
3.5.5 Resuming Internals . 15

3.6 TLS Extensions . 15
3.6.1 Maximum Fragment Length Negotiation 16
3.6.2 Server Name Indication . 16
3.6.3 Session Tickets . 16

3.7 Selecting Cryptographic Key Sizes . 16
3.8 On SSL 2 and Older Protocols . 17
3.9 On Record Padding . 18
3.10 Safe Renegotiation . 18

4 Authentication Methods . 21
4.1 Certificate Authentication . 21

4.1.1 Authentication Using X.509 Certificates 21
4.1.2 Authentication Using OpenPGP Keys . 21
4.1.3 Using Certificate Authentication . 21

4.2 Anonymous Authentication . 23

ii

4.3 Authentication using SRP . 23
4.4 Authentication using PSK . 24
4.5 Authentication and Credentials . 25
4.6 Parameters Stored in Credentials . 26

5 More on Certificate Authentication 28
5.1 The X.509 Trust Model . 28

5.1.1 X.509 Certificates . 28
5.1.2 Verifying X.509 Certificate Paths . 30
5.1.3 PKCS #10 Certificate Requests . 31
5.1.4 PKCS #12 Structures . 31

5.2 The OpenPGP Trust Model . 31
5.2.1 OpenPGP Keys . 32
5.2.2 Verifying an OpenPGP Key . 32

5.3 PKCS #11 tokens . 33
5.3.1 Introduction . 33
5.3.2 Initialization . 34
5.3.3 Reading Objects . 34
5.3.4 Writing Objects . 36
5.3.5 Using a PKCS #11 token with TLS . 36

5.4 Abstract data types . 37
5.5 Digital Signatures . 37

5.5.1 Trading Security for Interoperability . 38

6 How To Use TLS in Application Protocols . . 40
6.1 Separate Ports . 40
6.2 Upward Negotiation . 40

7 How To Use GnuTLS in Applications 42
7.1 Preparation . 42

7.1.1 Headers . 42
7.1.2 Initialization . 42
7.1.3 Version Check . 42
7.1.4 Debugging . 42
7.1.5 Building the Source . 42

7.2 Multi-Threaded Applications . 43
7.3 Client Examples . 44

7.3.1 Simple Client Example with Anonymous Authentication . . 44
7.3.2 Simple Client Example with X.509 Certificate Support 46
7.3.3 Obtaining Session Information . 49
7.3.4 Verifying Peer’s Certificate . 51
7.3.5 Using a Callback to Select the Certificate to Use 61
7.3.6 Using a PKCS #11 token with TLS . 67
7.3.7 Client with Resume Capability Example 74
7.3.8 Simple Client Example with SRP Authentication 77
7.3.9 Simple Client Example using the C++ API 80
7.3.10 Helper Function for TCP Connections 82

iii

7.4 Server Examples . 84
7.4.1 Echo Server with X.509 Authentication 84
7.4.2 Echo Server with OpenPGP Authentication 88
7.4.3 Echo Server with SRP Authentication . 92
7.4.4 Echo Server with Anonymous Authentication 96

7.5 Miscellaneous Examples . 100
7.5.1 Checking for an Alert . 100
7.5.2 X.509 Certificate Parsing Example . 101
7.5.3 Certificate Request Generation . 104
7.5.4 PKCS #12 Structure Generation . 106

7.6 Compatibility with the OpenSSL Library . 109
7.7 Keying Material Exporters . 109
7.8 Channel Bindings . 109

8 Included Programs . 111
8.1 Invoking certtool . 111
8.2 Invoking gnutls-cli . 116

8.2.1 Example client PSK connection . 117
8.3 Invoking gnutls-cli-debug . 118
8.4 Invoking gnutls-serv . 118

8.4.1 Setting Up a Test HTTPS Server . 119
8.4.2 Example server PSK connection . 122

8.5 Invoking psktool . 122
8.6 Invoking srptool . 123
8.7 Invoking p11tool . 123

9 Function Reference . 125
9.1 Core Functions . 125
9.2 X.509 Certificate Functions . 215
9.3 GnuTLS-extra Functions . 282
9.4 OpenPGP Functions . 283
9.5 TLS Inner Application (TLS/IA) Functions 302
9.6 Error Codes and Descriptions . 309

10 All the Supported Ciphersuites in GnuTLS
. 317

iv

11 Guile Bindings . 321
11.1 Guile Preparations . 321
11.2 Guile API Conventions . 322

11.2.1 Enumerates and Constants . 322
11.2.2 Procedure Names . 323
11.2.3 Representation of Binary Data . 323
11.2.4 Input and Output . 324
11.2.5 Exception Handling . 324

11.3 Guile Examples . 325
11.3.1 Anonymous Authentication Guile Example 325
11.3.2 OpenPGP Authentication Guile Example 327
11.3.3 Importing OpenPGP Keys Guile Example 328

11.4 Guile Reference . 329
11.4.1 Core Interface . 329
11.4.2 Extra Interface . 337

12 Internal Architecture of GnuTLS 339
12.1 The TLS Protocol . 339
12.2 TLS Handshake Protocol . 340
12.3 TLS Authentication Methods . 341
12.4 TLS Extension Handling . 342

12.4.1 Adding a New TLS Extension . 342
12.5 Certificate Handling . 346
12.6 Cryptographic Backend . 347

12.6.1 Cryptographic Library layer . 347
12.6.2 External cryptography provider . 347

12.6.2.1 Override specific algorithms . 348
12.6.2.2 Override parts of the backend . 348

Appendix A Copying Information 349
A.1 GNU Free Documentation License . 349
A.2 GNU Lesser General Public License . 356
A.3 GNU General Public License . 364

Bibliography . 376

Function and Data Index . 379

Concept Index . 387

Chapter 1: Preface 1

1 Preface

This document tries to demonstrate and explain the GnuTLS library API. A brief intro-
duction to the protocols and the technology involved, is also included so that an applica-
tion programmer can better understand the GnuTLS purpose and actual offerings. Even if
GnuTLS is a typical library software, it operates over several security and cryptographic pro-
tocols, which require the programmer to make careful and correct usage of them, otherwise
he risks to offer just a false sense of security. Security and the network security terms are
very general terms even for computer software thus cannot be easily restricted to a single
cryptographic library. For that reason, do not consider a program secure just because it
uses GnuTLS; there are several ways to compromise a program or a communication line and
GnuTLS only helps with some of them.

Although this document tries to be self contained, basic network programming and PKI
knowlegde is assumed in most of it. A good introduction to networking can be found in
[STEVENS] (see [Bibliography], page 376) and for Public Key Infrastructure in [GUTPKI]
(see [Bibliography], page 376).

Updated versions of the GnuTLS software and this document will be available from
http://www.gnutls.org/ and http://www.gnu.org/software/gnutls/.

1.1 Getting Help

A mailing list where users may help each other exists, and you can reach it by
sending e-mail to help-gnutls@gnu.org. Archives of the mailing list discussions, and
an interface to manage subscriptions, is available through the World Wide Web at
http://lists.gnu.org/mailman/listinfo/help-gnutls.

A mailing list for developers are also available, see http://www.gnu.org/software/gnutls/lists.html.

Bug reports should be sent to bug-gnutls@gnu.org, see See Section 1.4 [Bug Reports],
page 3.

1.2 Commercial Support

Commercial support is available for users of GnuTLS. The kind of support that can be
purchased may include:

• Implement new features. Such as a new TLS extension.

• Port GnuTLS to new platforms. This could include porting to an embedded platforms
that may need memory or size optimization.

• Integrating TLS as a security environment in your existing project.

• System design of components related to TLS.

If you are interested, please write to:

Simon Josefsson Datakonsult

Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

http://www.gnutls.org/
http://www.gnu.org/software/gnutls/
mailto:help-gnutls@gnu.org
http://lists.gnu.org/mailman/listinfo/help-gnutls
http://www.gnu.org/software/gnutls/lists.html
mailto:bug-gnutls@gnu.org

Chapter 1: Preface 2

If your company provides support related to GnuTLS and would like to be mentioned here,
contact the author (see Section 1.4 [Bug Reports], page 3).

1.3 Downloading and Installing

GnuTLS is available for download from the following URL:

http://www.gnutls.org/download.html

The latest version is stored in a file, e.g., ‘gnutls-2.12.2.tar.gz’ where the ‘2.12.2’ value
is the highest version number in the directory.

GnuTLS uses a Linux-like development cycle: even minor version numbers indicate a stable
release and a odd minor version number indicates a development release. For example,
GnuTLS 1.6.3 denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a devel-
opment release since 7 is odd.

GnuTLS depends on Libgcrypt, and you will need to install Libgcrypt before installing
GnuTLS. Libgcrypt is available from ftp://ftp.gnupg.org/gcrypt/libgcrypt.
Libgcrypt needs another library, libgpg-error, and you need to install
libgpg-error before installing Libgcrypt. Libgpg-error is available from
ftp://ftp.gnupg.org/gcrypt/libgpg-error.

Don’t forget to verify the cryptographic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive. Typically you invoke ./configure and then
make check install. There are a number of compile-time parameters, as discussed below.

The compression libraries (libz and lzo) are optional dependencies. You can get libz from
http://www.zlib.net/. You can get lzo from http://www.oberhumer.com/opensource/lzo/.

The X.509 part of GnuTLS needs ASN.1 functionality, from a library called libtasn1.
A copy of libtasn1 is included in GnuTLS. If you want to install it separately
(e.g., to make it possibly to use libtasn1 in other programs), you can get it from
http://www.gnu.org/software/gnutls/download.html.

The OpenPGP part of GnuTLS uses a stripped down version of OpenCDK for parsing
OpenPGP packets. It is included GnuTLS. Use parameter --disable-openpgp-

authentication to disable the OpenPGP functionality in GnuTLS. Unfortunately, we
didn’t have resources to maintain the code in a separate library.

Regarding the Guile bindings, there are additional installation considerations, see See
Section 11.1 [Guile Preparations], page 321.

A few configure options may be relevant, summarized in the table.

--disable-srp-authentication

--disable-psk-authentication

--disable-anon-authentication

--disable-extra-pki

--disable-openpgp-authentication

--disable-openssl-compatibility

Disable or enable particular features. Generally not recommended.

For the complete list, refer to the output from configure --help.

http://www.gnutls.org/download.html
ftp://ftp.gnupg.org/gcrypt/libgcrypt
ftp://ftp.gnupg.org/gcrypt/libgpg-error
http://www.zlib.net/
http://www.oberhumer.com/opensource/lzo/
http://www.gnu.org/software/gnutls/download.html

Chapter 1: Preface 3

1.4 Bug Reports

If you think you have found a bug in GnuTLS, please investigate it and report it.

• Please make sure that the bug is really in GnuTLS, and preferably also check that it
hasn’t already been fixed in the latest version.

• You have to send us a test case that makes it possible for us to reproduce the bug.

• You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that can
be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of the
software; if the bug report is poor, we won’t do anything about it (apart from asking you
to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gnutls@gnu.org’

1.5 Contributing

If you want to submit a patch for inclusion – from solve a typo you discovered, up to adding
support for a new feature – you should submit it as a bug report (see Section 1.4 [Bug
Reports], page 3). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the copyright
of your work to the Free Software Foundation. This is to protect the freedom of the project.
If you have not already signed papers, we will send you the necessary information when you
submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines are
common sense. Use it.

For code contributions, a number of style guides will help you:

• Coding Style. Follow the GNU Standards document (see 〈undefined〉 [top], page 〈un-
defined〉).
If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see 〈undefined〉 [top], page 〈undefined〉)
before submitting your work.

• Use the unified diff format ‘diff -u’.

• Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

• Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

Chapter 1: Preface 4

• Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

• Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: The Library 5

2 The Library

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols
ranging from SSL 3.0 to TLS 1.2 (See Chapter 3 [Introduction to TLS], page 8, for a
more detailed description of the protocols), accompanied with the required framework for
authentication and public key infrastructure. Important features of the GnuTLS library
include:

• Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

• Support for both X.509 and OpenPGP certificates.

• Support for handling and verification of certificates.

• Support for SRP for TLS authentication.

• Support for PSK for TLS authentication.

• Support for TLS Extension mechanism.

• Support for TLS Compression Methods.

Additionally GnuTLS provides a limited emulation API for the widely used OpenSSL1 li-
brary, to ease integration with existing applications.

GnuTLS consists of three independent parts, namely the “TLS protocol part”, the “Certifi-
cate part”, and the “Cryptographic backend” part. The ‘TLS protocol part’ is the actual
protocol implementation, and is entirely implemented within the GnuTLS library. The ‘Cer-
tificate part’ consists of the certificate parsing, and verification functions which is partially
implemented in the GnuTLS library. The Libtasn12, a library which offers ASN.1 parsing ca-
pabilities, is used for the X.509 certificate parsing functions. A smaller version of OpenCDK3

is used for the OpenPGP key support in GnuTLS. The “Cryptographic backend” is provided
by the Libgcrypt4 library5.

In order to ease integration in embedded systems, parts of the GnuTLS library can be
disabled at compile time. That way a small library, with the required features, can be
generated.

1 http://www.openssl.org/
2 ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/libtasn1/
3 ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/opencdk/
4 ftp://ftp.gnupg.org/gcrypt/alpha/libgcrypt/
5 On current versions of GnuTLS it is possible to override the default crypto backend. Check see Section 12.6

[Cryptographic Backend], page 347 for details

http://www.openssl.org/
ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/libtasn1/
ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/opencdk/
ftp://ftp.gnupg.org/gcrypt/alpha/libgcrypt/

Chapter 2: The Library 6

2.1 General Idea

A brief description of how GnuTLS works internally is shown at the figure below. This section
may be easier to understand after having seen the examples (see [examples], page 42).

As shown in the figure, there is a read-only global state that is initialized once by the global
initialization function. This global structure, among others, contains the memory allocation
functions used, and some structures needed for the ASN.1 parser. This structure is never
modified by any GnuTLS function, except for the deinitialization function which frees all
memory allocated in the global structure and is called after the program has permanently
finished using GnuTLS.

The credentials structure is used by some authentication methods, such as certificate au-
thentication (see [Certificate Authentication], page 28). A credentials structure may contain
certificates, private keys, temporary parameters for Diffie-Hellman or RSA key exchange,
and other stuff that may be shared between several TLS sessions.

This structure should be initialized using the appropriate initialization functions. For ex-
ample an application which uses certificate authentication would probably initialize the
credentials, using the appropriate functions, and put its trusted certificates in this struc-
ture. The next step is to associate the credentials structure with each TLS session.

A GnuTLS session contains all the required stuff for a session to handle one secure connection.
This session calls directly to the transport layer functions, in order to communicate with
the peer. Every session has a unique session ID shared with the peer.

Since TLS sessions can be resumed, servers would probably need a database backend to
hold the session’s parameters. Every GnuTLS session after a successful handshake calls the
appropriate backend function (See [resume], page 15, for information on initialization) to
store the newly negotiated session. The session database is examined by the server just
after having received the client hello6, and if the session ID sent by the client, matches a

6 The first message in a TLS handshake

Chapter 2: The Library 7

stored session, the stored session will be retrieved, and the new session will be a resumed
one, and will share the same session ID with the previous one.

2.2 Error Handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends and receives will be
disallowed. An example of a fatal error code is GNUTLS_E_DECRYPTION_FAILED. Non-fatal
errors may warn about something, i.e., a warning alert was received, or indicate the some
action has to be taken. This is the case with the error code GNUTLS_E_REHANDSHAKE returned
by [gnutls record recv], page 194. This error code indicates that the server requests a re-
handshake. The client may ignore this request, or may reply with an alert. You can test if
an error code is a fatal one by using the [gnutls error is fatal], page 156.

If any non fatal errors, that require an action, are to be returned by a function, these error
codes will be documented in the function’s reference. See [Error Codes], page 309, for all
the error codes.

2.3 Memory Handling

GnuTLS internally handles heap allocated objects differently, depending on the sensitivity
of the data they contain. However for performance reasons, the default memory functions
do not overwrite sensitive data from memory, nor protect such objects from being written
to the swap. In order to change the default behavior the [gnutls global set mem functions],
page 159 function is available which can be used to set other memory handlers than the
defaults.

The Libgcrypt library on which GnuTLS depends, has such secure memory allocation func-
tions available. These should be used in cases where even the system’s swap memory is not
considered secure. See the documentation of Libgcrypt for more information.

2.4 Callback Functions

There are several cases where GnuTLS may need some out of band input from your program.
This is now implemented using some callback functions, which your program is expected to
register.

An example of this type of functions are the push and pull callbacks which are used to
specify the functions that will retrieve and send data to the transport layer.

• [gnutls transport set push function], page 214

• [gnutls transport set pull function], page 213

Other callback functions such as the one set by [gnutls srp set server credentials function],
page 210, may require more complicated input, including data to be allocated. These
callbacks should allocate and free memory using the functions shown below.

• [gnutls malloc], page 168

• [gnutls free], page 158

Chapter 3: Introduction to TLS 8

3 Introduction to TLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [SSL3] (see [Bibliography], page 376) designed by Netscape. TLS is an
Internet protocol, defined by IETF1, described in RFC 4346 and also in [RESCORLA] (see
[Bibliography], page 376). The protocol provides confidentiality, and authentication layers
over any reliable transport layer. The description, below, refers to TLS 1.0 but also applies to
TLS 1.1 [RFC4346] (see [Bibliography], page 376) and SSL 3.0, since the differences of these
protocols are minor. Older protocols such as SSL 2.0 are not discussed nor implemented
in GnuTLS since they are not considered secure today. GnuTLS also supports X.509 and
OpenPGP [RFC4880] (see [Bibliography], page 376).

3.1 TLS Layers

TLS is a layered protocol, and consists of the Record Protocol, the Handshake Protocol and
the Alert Protocol. The Record Protocol is to serve all other protocols and is above the
transport layer. The Record protocol offers symmetric encryption, data authenticity, and
optionally compression.

The Alert protocol offers some signaling to the other protocols. It can help informing the
peer for the cause of failures and other error conditions. See [The Alert Protocol], page 11,
for more information. The alert protocol is above the record protocol.

The Handshake protocol is responsible for the security parameters’ negotiation, the initial
key exchange and authentication. See [The Handshake Protocol], page 11, for more infor-
mation about the handshake protocol. The protocol layering in TLS is shown in the figure
below.

1 IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS 9

3.2 The Transport Layer

TLS is not limited to one transport layer, it can be used above any transport layer, as long
as it is a reliable one. A set of functions is provided and their purpose is to load to GnuTLS

the required callbacks to access the transport layer.

• [gnutls transport set push function], page 214

• [gnutls transport set vec push function], page 214

• [gnutls transport set pull function], page 213

• [gnutls transport set ptr], page 213

• [gnutls transport set lowat], page 213

• [gnutls transport set errno], page 212

These functions accept a callback function as a parameter. The callback functions should
return the number of bytes written, or -1 on error and should set errno appropriately.

In some environments, setting errno is unreliable, for example Windows have several errno
variables in different CRTs, or it may be that errno is not a thread-local variable. If this is
a concern to you, call gnutls_transport_set_errno with the intended errno value instead
of setting errno directly.

GnuTLS currently only interprets the EINTR and EAGAIN errno values and returns the
corresponding GnuTLS error codes GNUTLS_E_INTERRUPTED and GNUTLS_E_AGAIN. These
values are usually returned by interrupted system calls, or when non blocking IO is used.
All GnuTLS functions can be resumed (called again), if any of these error codes is returned.
The error codes above refer to the system call, not the GnuTLS function, since signals do
not interrupt GnuTLS’ functions.

For non blocking sockets or other custom made pull/push functions the
[gnutls transport set lowat], page 213 must be called, with a zero low water
mark value.

By default, if the transport functions are not set, GnuTLS will use the Berkeley Sockets
functions. In this case GnuTLS will use some hacks in order for select to work, thus
making it easy to add TLS support to existing TCP/IP servers.

3.3 The TLS Record Protocol

The Record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and —optionally— compress packets. The following functions are available:

[gnutls record send], page 195:
To send a record packet (with application data).

[gnutls record recv], page 194:
To receive a record packet (with application data).

[gnutls record get direction], page 194:
To get the direction of the last interrupted function call.

As you may have already noticed, the functions which access the Record protocol, are quite
limited, given the importance of this protocol in TLS. This is because the Record protocol’s
parameters are all set by the Handshake protocol.

Chapter 3: Introduction to TLS 10

The Record protocol initially starts with NULL parameters, which means no encryption,
and no MAC is used. Encryption and authentication begin just after the handshake protocol
has finished.

3.3.1 Encryption Algorithms Used in the Record Layer

Confidentiality in the record layer is achieved by using symmetric block encryption algo-
rithms like 3DES, AES2, or stream algorithms like ARCFOUR_1283. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms
in TLS also provide protection against statistical analysis of the data. Thus, if you’re us-
ing the TLS protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.

Supported cipher algorithms:

3DES_CBC 3DES_CBC is the DES block cipher algorithm used with triple encryption (EDE).
Has 64 bits block size and is used in CBC mode.

ARCFOUR_128

ARCFOUR is a fast stream cipher.

ARCFOUR_40

This is the ARCFOUR cipher that is fed with a 40 bit key, which is considered
weak.

AES_CBC AES or RIJNDAEL is the block cipher algorithm that replaces the old DES
algorithm. Has 128 bits block size and is used in CBC mode.

Supported MAC algorithms:

MAC_MD5 MD5 is a cryptographic hash algorithm designed by Ron Rivest. Outputs 128
bits of data.

MAC_SHA SHA is a cryptographic hash algorithm designed by NSA. Outputs 160 bits of
data.

3.3.2 Compression Algorithms Used in the Record Layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS

can be found in the table below. All the algorithms except for DEFLATE which is referenced
in [RFC3749] (see [Bibliography], page 376), should be considered as GnuTLS’ extensions4,
and should be advertised only when the peer is known to have a compliant client, to avoid
interoperability problems.

The included algorithms perform really good when text, or other compressible data are to
be transfered, but offer nothing on already compressed data, such as compressed images,
zipped archives etc. These compression algorithms, may be useful in high bandwidth TLS
tunnels, and in cases where network usage has to be minimized. As a drawback, compression
increases latency.

2 AES, or Advanced Encryption Standard, is actually the RIJNDAEL algorithm. This is the algorithm that
replaced DES.

3 ARCFOUR_128 is a compatible algorithm with RSA’s RC4 algorithm, which is considered to be a trade secret.
4 You should use [gnutls handshake set private extensions], page 161 to enable private extensions.

Chapter 3: Introduction to TLS 11

The record layer compression in GnuTLS is implemented based on the proposal [RFC3749]
(see [Bibliography], page 376). The supported compression algorithms are:

DEFLATE Zlib compression, using the deflate algorithm.

LZO LZO is a very fast compression algorithm. This algorithm is only available
if the GnuTLS-extra library has been initialized and the private extensions are
enabled, and if GnuTLS was built with LZO support.

3.3.3 Weaknesses and Countermeasures

Some weaknesses that may affect the security of the Record layer have been found in TLS

1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that

1. TLS has separate alerts for “decryption failed” and “bad record mac”

2. The decryption failure reason can be detected by timing the response time.

3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.

Those weaknesses were solved in TLS 1.1 [RFC4346] (see [Bibliography], page 376) which
is implemented in GnuTLS. For a detailed discussion see the archives of the TLS Working
Group mailing list and the paper [CBCATT] (see [Bibliography], page 376).

3.4 The TLS Alert Protocol

The Alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (see GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(see GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent
future renegotiations using the current session ID.

The alert messages are protected by the record protocol, thus the information that is in-
cluded does not leak. You must take extreme care for the alert information not to leak to
a possible attacker, via public log files etc.

[gnutls alert send], page 126:
To send an alert signal.

[gnutls error to alert], page 157:
To map a gnutls error number to an alert signal.

[gnutls alert get], page 125:
Returns the last received alert.

[gnutls alert get name], page 125:
Returns the name, in a character array, of the given alert.

3.5 The TLS Handshake Protocol

The Handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. Available functions to
control the handshake protocol include:

Chapter 3: Introduction to TLS 12

[gnutls priority init], page 179:
To initialize a priority set of ciphers.

[gnutls priority deinit], page 179:
To deinitialize a priority set of ciphers.

[gnutls priority set], page 180:
To associate a priority set with a TLS session.

[gnutls priority set direct], page 180:
To directly associate a session with a given priority string.

[gnutls credentials set], page 146:
To set the appropriate credentials structures.

[gnutls certificate server set request], page 132:
To set whether client certificate is required or not.

[gnutls handshake], page 161:
To initiate the handshake.

3.5.1 TLS Cipher Suites

The Handshake Protocol of TLS negotiates cipher suites of the form TLS_DHE_RSA_WITH_

3DES_CBC_SHA. The usual cipher suites contain these parameters:

• The key exchange algorithm. DHE_RSA in the example.

• The Symmetric encryption algorithm and mode 3DES_CBC in this example.

• The MAC5 algorithm used for authentication. MAC_SHA is used in the above example.

The cipher suite negotiated in the handshake protocol will affect the Record Protocol, by
enabling encryption and data authentication. Note that you should not over rely on TLS

to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.

All the supported ciphersuites are shown in [ciphersuites], page 317.

3.5.2 Priority strings

In order to specify cipher suite preferences, the previously shown priority functions accept
a string that specifies the algorithms to be enabled in a TLS handshake. That string may
contain some high level keyword such as:

PERFORMANCE:
All the "secure" ciphersuites are enabled, limited to 128 bit ciphers and sorted
by terms of speed performance.

NORMAL:
Means all "secure" ciphersuites. The 256-bit ciphers are included as a fallback
only. The ciphers are sorted by security margin.

SECURE128:
Means all "secure" ciphersuites with ciphers up to 128 bits, sorted by security
margin.

5 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

Chapter 3: Introduction to TLS 13

SECURE256:
Means all "secure" ciphersuites including the 256 bit ciphers, sorted by security
margin.

EXPORT: Means all ciphersuites are enabled, including the low-security 40 bit ciphers.

NONE: Means nothing is enabled. This disables even protocols and compression meth-
ods. It should be followed by the algorithms to be enabled.

or it might contain special keywords, that will be explained later on.

Unless the first keyword is "NONE" the defaults (in preference order) are for TLS proto-
cols TLS 1.2, TLS1.1, TLS1.0, SSL3.0; for compression NULL; for certificate types X.509,
OpenPGP. For key exchange algorithms when in NORMAL or SECURE levels the perfect
forward secrecy algorithms take precedence of the other protocols. In all cases all the sup-
ported key exchange algorithms are enabled (except for the RSA-EXPORT which is only
enabled in EXPORT level).

The NONE keyword is followed by the algorithms to be enabled, and is used to provide
the exact list of requested algorithms6. The order with which every algorithm is specified
is significant. Similar algorithms specified before others will take precedence.

Keywords prepended to individual algorithms:

’ !’ or ’-’ appended with an algorithm will remove this algorithm.

"+" appended with an algorithm will add this algorithm.

Individual algorithms:

Ciphers: AES-128-CBC, AES-256-CBC, CAMELLIA-128-CBC, CAMELLIA-256-CBC,
ARCFOUR-128, 3DES-CBC ARCFOUR-40. Catch all name is CIPHER-ALL
which will add all the algorithms from NORMAL priority.

Key exchange:
RSA, DHE-RSA, DHE-DSS, SRP, SRP-RSA, SRP-DSS, PSK, DHE-PSK,
ANON-DH, RSA-EXPORT. The key exchange methods do not have a catch
all.

MAC: MD5, SHA1, SHA256. All algorithms from NORMAL priority can be accessed
with MAC-ALL.

Compression algorithms:
COMP-NULL, COMP-DEFLATE. Catch all is COMP-ALL.

TLS versions:
VERS-SSL3.0, VERS-TLS1.0, VERS-TLS1.1, VERS-TLS1.2. Catch all is
VERS-TLS-ALL.

Signature algorithms:
SIGN-RSA-SHA1, SIGN-RSA-SHA224, SIGN-RSA-SHA256, SIGN-RSA-
SHA384, SIGN-RSA-SHA512, SIGN-DSA-SHA1, SIGN-DSA-SHA224,
SIGN-DSA-SHA256, SIGN-RSA-MD5. Catch all is SIGN-ALL. This is only
valid for TLS 1.2 and later.

6 To avoid collisions in order to specify a compression algorithm in this string you have to prefix it with
"COMP-", protocol versions with "VERS-", signature algorithms with "SIGN-" and certificate types with
"CTYPE-". All other algorithms don’t need a prefix.

Chapter 3: Introduction to TLS 14

Special keywords:

%COMPAT:
will enable compatibility mode. It might mean that violations of the protocols
are allowed as long as maximum compatibility with problematic clients and
servers is achieved.

%DISABLE SAFE RENEGOTIATION:
will disable safe renegotiation completely. Do not use unless you know what
you are doing. Testing purposes only.

%UNSAFE RENEGOTIATION:
will allow handshakes and rehandshakes without the safe renegotiation exten-
sion. Note that for clients this mode is insecure (you may be under attack), and
for servers it will allow insecure clients to connect (which could be fooled by an
attacker). Do not use unless you know what you are doing and want maximum
compatibility.

%PARTIAL RENEGOTIATION:
will allow initial handshakes to proceed, but not rehandshakes. This leaves the
client vulnerable to attack, and servers will be compatible with non-upgraded
clients for initial handshakes. This is currently the default for clients and
servers, for compatibility reasons.

%SAFE RENEGOTIATION:
will enforce safe renegotiation. Clients and servers will refuse to talk to an
insecure peer. Currently this causes operability problems, but is required for
full protection.

%SSL3 RECORD VERSION:
will use SSL3.0 record version in client hello. This is the default.

%LATEST RECORD VERSION:
will use the latest TLS version record version in client hello.

%VERIFY ALLOW SIGN RSA MD5:
will allow RSA-MD5 signatures in certificate chains.

%VERIFY ALLOW X509 V1 CA CRT:
will allow V1 CAs in chains.

3.5.3 Client Authentication

In the case of ciphersuites that use certificate authentication, the authentication of the
client is optional in TLS. A server may request a certificate from the client — using the
[gnutls certificate server set request], page 132 function. If a certificate is to be requested
from the client during the handshake, the server will send a certificate request message
that contains a list of acceptable certificate signers. In GnuTLS the certificate signers list
is constructed using the trusted Certificate Authorities by the server. That is the ones set
using

• [gnutls certificate set x509 trust file], page 139

• [gnutls certificate set x509 trust mem], page 139

Chapter 3: Introduction to TLS 15

Sending of the names of the CAs can be controlled using [gnutls certificate send x509 rdn sequence],
page 132. The client, then, may send a certificate, signed by one of the server’s acceptable
signers.

3.5.4 Resuming Sessions

The [gnutls handshake], page 161 function, is expensive since a lot of calculations are per-
formed. In order to support many fast connections to the same server a client may use
session resuming. Session resuming is a feature of the TLS protocol which allows a client to
connect to a server, after a successful handshake, without the expensive calculations. This
is achieved by using the previously established keys. GnuTLS supports this feature, and the
example (see [ex:resume-client], page 74) illustrates a typical use of it.

Keep in mind that sessions are expired after some time, for security reasons, thus it may be
normal for a server not to resume a session even if you requested that. Also note that you
must enable, using the priority functions, at least the algorithms used in the last session.

3.5.5 Resuming Internals

The resuming capability, mostly in the server side, is one of the problems of a thread-safe
TLS implementations. The problem is that all threads must share information in order
to be able to resume sessions. The gnutls approach is, in case of a client, to leave all the
burden of resuming to the client. I.e., copy and keep the necessary parameters. See the
functions:

• [gnutls session get data], page 202

• [gnutls session get id], page 202

• [gnutls session set data], page 203

The server side is different. A server has to specify some callback functions which store,
retrieve and delete session data. These can be registered with:

• [gnutls db set remove function], page 152

• [gnutls db set store function], page 152

• [gnutls db set retrieve function], page 152

• [gnutls db set ptr], page 151

It might also be useful to be able to check for expired sessions in order to remove them, and
save space. The function [gnutls db check entry], page 151 is provided for that reason.

3.6 TLS Extensions

A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT] (see
[Bibliography], page 376). The extensions supported in GnuTLS are:

• Maximum fragment length negotiation

• Server name indication

• Session tickets

and they will be discussed in the subsections that follow.

Chapter 3: Introduction to TLS 16

3.6.1 Maximum Fragment Length Negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities. See
the [gnutls record set max size], page 195 and the [gnutls record get max size], page 194
functions.

3.6.2 Server Name Indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions [gnutls server name set], page 200 and [gnutls server name get], page 200 can be
used to enable this extension, or to retrieve the name sent by a client.

3.6.3 Session Tickets

To resume a TLS session the server normally store some state. This complicates deployment,
and typical situations the client can cache information and send it to the server instead.
The Session Ticket extension implements this idea, and it is documented in RFC 5077
[TLSTKT] (see [Bibliography], page 376).

Clients can enable support for TLS tickets with [gnutls session ticket enable client],
page 203 and servers use [gnutls session ticket key generate], page 204 to generate a key
and [gnutls session ticket enable server], page 203 to enable the extension. Clients resume
sessions using the ticket using the normal session resume functions, [resume], page 15.

3.7 Selecting Cryptographic Key Sizes

In TLS, since a lot of algorithms are involved, it is not easy to set a consistent security
level. For this reason this section will present some correspondance between key sizes of
symmetric algorithms and public key algorithms based on the “ECRYPT II Yearly Report
on Algorithms and Keysizes (2009-2010)” in [ECRYPT] (see [Bibliography], page 376).
Those can be used to generate certificates with appropriate key sizes as well as parameters
for Diffie-Hellman and SRP authentication.

Security
bits

RSA, DH
and SRP
parameter
size

ECC
key
size

gnutls_sec_

param_t

Description

64 816 128 WEAK Very short term protection
against small organizations

80 1248 160 LOW Very short term protection
against agencies

112 2432 224 NORMAL Medium-term protection

Chapter 3: Introduction to TLS 17

128 3248 256 HIGH Long term protection

256 15424 512 ULTRA Foreseeable future

The first column provides a security parameter in a number of bits. This gives an indication
of the number of combinations to be tried by an adversary to brute force a key. For example
to test all possible keys in a 112 bit security parameter 2112 combinations have to be tried.
For today’s technology this is infeasible. The next two columns correlate the security
parameter with actual bit sizes of parameters for DH, RSA, SRP and ECC algorithms. A
mapping to gnutls_sec_param_t value is given for each security parameter, on the next
column, and finally a brief description of the level.

Note however that the values suggested here are nothing more than an educated guess that
is valid today. There are no guarrantees that an algorithm will remain unbreakable or
that these values will remain constant in time. There could be scientific breakthroughs that
cannot be predicted or total failure of the current public key systems by quantum computers.
On the other hand though the cryptosystems used in TLS are selected in a conservative
way and such catastrophic breakthroughs or failures are believed to be unlikely.

NIST publication SP 800-57 [NISTSP80057] (see [Bibliography], page 376) contains a similar
table.

When using GnuTLS and a decision on bit sizes for a public key algorithm is required, use
of the following functions is recommended:

• [gnutls pk bits to sec param], page 170

• [gnutls sec param to pk bits], page 200

Those functions will convert a human understandable security parameter of gnutls_sec_
param_t type, to a number of bits suitable for a public key algorithm.

3.8 On SSL 2 and Older Protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest
at that time, and was considered to be the most advanced in security properties. Later the
SSL 3.0 protocol was implemented since it is still the only protocol supported by several
servers and there are no serious security vulnerabilities known.

One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:

• Message integrity compromised. The SSLv2 message authentication uses the MD5
function, and is insecure.

• Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which
permits a man-in-the-middle attack.

• Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can
forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.

• Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used
for both message authentication and encryption, so if weak encryption schemes are

Chapter 3: Introduction to TLS 18

negotiated (say 40-bit keys) the message authentication code use the same weak key,
which isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

3.9 On Record Padding

The TLS protocol allows for random padding of records, to make it more difficult to perform
analysis on the length of exchanged messages. (In RFC 4346 this is specified in section
6.2.3.2.) GnuTLS appears to be one of few implementation that take advantage of this
text, and pad records by a random length.

The TLS implementation in the Symbian operating system, frequently used by Nokia and
Sony-Ericsson mobile phones, cannot handle non-minimal record padding. What happens
when one of these clients handshake with a GnuTLS server is that the client will fail to
compute the correct MAC for the record. The client sends a TLS alert (bad_record_mac)
and disconnects. Typically this will result in error messages such as ’A TLS fatal alert has
been received’, ’Bad record MAC’, or both, on the GnuTLS server side.

GnuTLS implements a work around for this problem. However, it has to be enabled
specifically. It can be enabled by using [gnutls record disable padding], page 194, or
[gnutls priority set], page 180 with the %COMPAT priority string.

If you implement an application that have a configuration file, we recommend that you make
it possible for users or administrators to specify a GnuTLS protocol priority string, which
is used by your application via [gnutls priority set], page 180. To allow the best flexibility,
make it possible to have a different priority string for different incoming IP addresses.

To enable the workaround in the gnutls-cli client or the gnutls-serv server, for testing
of other implementations, use the following parameter: --priority "NORMAL:%COMPAT".

3.10 Safe Renegotiation

TLS gives the option to two communicating parties to renegotiate and update their secu-
rity parameters. One useful example of this feature was for a client to initially connect
using anonymous negotiation to a server, and the renegotiate using some authenticated
ciphersuite. This occured to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is
renegotiating is the same as the one in the initial negotiation. For example one server could
forward all renegotiation traffic to an other server who will see this traffic as an initial
negotiation attempt.

This might be seen as a valid design decision, but it seems it was not widely known or un-
derstood, thus today some application protocols the TLS renegotiation feature in a manner
that enables a malicious server to insert content of his choice in the beginning of a TLS
session.

The most prominent vulnerability was with HTTPS. There servers request a renegotiation
to enforce an anonymous user to use a certificate in order to access certain parts of a web
site. The attack works by having the attacker simulate a client and connect to a server, with
server-only authentication, and send some data intended to cause harm. The server will
then require renegotiation from him in order to perform the request. When the proper client

Chapter 3: Introduction to TLS 19

attempts to contact the server, the attacker hijacks that connection and forwards traffic to
the initial server that requested renegotiation. The attacker will not be able to read the
data exchanged between the client and the server. However, the server will (incorrectly)
assume that the initial request sent by the attacker was sent by the now authenticated
client. The result is a prefix plain-text injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renego-
tiated handshakes with the initial negotiation. When the extension is used, the attack is
detected and the session can be terminated. The extension is specified in [RFC5746] (see
[Bibliography], page 376).

GnuTLS supports the safe renegotiation extension. The default behavior is as follows.
Clients will attempt to negotiate the safe renegotiation extension when talking to servers.
Servers will accept the extension when presented by clients. Clients and servers will permit
an initial handshake to complete even when the other side does not support the safe renego-
tiation extension. Clients and servers will refuse renegotiation attempts when the extension
has not been negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension
is not enabled, is open up for attacks. Changing this default behaviour would prevent
interoperability against the majority of deployed servers out there. We will reconsider this
default behaviour in the future when more servers have been upgraded. Note that it is
easy to configure clients to always require the safe renegotiation extension from servers (see
below on the %SAFE_RENEGOTIATION priority string).

To modify the default behaviour, we have introduced some new priority strings. The priority
strings can be used by applications (see [gnutls priority set], page 180) and end users (e.g.,
--priority parameter to gnutls-cli and gnutls-serv).

The %UNSAFE_RENEGOTIATION priority string permits (re-)handshakes even when the
safe renegotiation extension was not negotiated. The default behavior is %PARTIAL_

RENEGOTIATION that will prevent renegotiation with clients and servers not supporting the
extension. This is secure for servers but leaves clients vulnerable to some attacks, but this is
a tradeoff between security and compatibility with old servers. The %SAFE_RENEGOTIATION
priority string makes clients and servers require the extension for every handshake. The
latter is the most secure option for clients, at the cost of not being able to connect to
legacy servers. Servers will also deny clients that do not support the extension from
connecting.

It is possible to disable use of the extension completely, in both clients and servers, by using
the %DISABLE_SAFE_RENEGOTIATION priority string however we strongly recommend you to
only do this for debugging and test purposes.

The default values if the flags above are not specified are:

Server: %PARTIAL RENEGOTIATION

Client: %PARTIAL RENEGOTIATION

Chapter 3: Introduction to TLS 20

For applications we have introduced a new API related to safe renegotiation. The
[gnutls safe renegotiation status], page 199 function is used to check if the extension has
been negotiated on a session, and can be used both by clients and servers.

Chapter 4: Authentication Methods 21

4 Authentication Methods

The TLS protocol provides confidentiality and encryption, but also offers authentication,
which is a prerequisite for a secure connection. The available authentication methods in
GnuTLS are:

• Certificate authentication

• Anonymous authentication

• SRP authentication

• PSK authentication

4.1 Certificate Authentication

4.1.1 Authentication Using X.509 Certificates

X.509 certificates contain the public parameters, of a public key algorithm, and an author-
ity’s signature, which proves the authenticity of the parameters. See Section 5.1 [The X.509
trust model], page 28, for more information on X.509 protocols.

4.1.2 Authentication Using OpenPGP Keys

OpenPGP keys also contain public parameters of a public key algorithm, and signatures from
several other parties. Depending on whether a signer is trusted the key is considered trusted
or not. GnuTLS’s OpenPGP authentication implementation is based on the [TLSPGP] (see
[Bibliography], page 376) proposal.

See Section 5.2 [The OpenPGP trust model], page 31, for more information about the
OpenPGP trust model. For a more detailed introduction to OpenPGP and GnuPG see
[GPGH] (see [Bibliography], page 376).

4.1.3 Using Certificate Authentication

In GnuTLS both the OpenPGP and X.509 certificates are part of the certificate authentication
and thus are handled using a common API.

When using certificates the server is required to have at least one certificate and pri-
vate key pair. A client may or may not have such a pair. The certificate and key pair
should be loaded, before any TLS session is initialized, in a certificate credentials struc-
ture. This should be done by using [gnutls certificate set x509 key file], page 136 or
[gnutls certificate set openpgp key file], page 283 depending on the certificate type. In
the X.509 case, the functions will also accept and use a certificate list that leads to a trusted
authority. The certificate list must be ordered in such way that every certificate certifies
the one before it. The trusted authority’s certificate need not to be included, since the peer
should possess it already.

As an alternative, a callback may be used so the server or the client specify the certificate
and the key at the handshake time. That callback can be set using the functions:

• [gnutls certificate server set retrieve function], page 133

• [gnutls certificate client set retrieve function], page 129

Chapter 4: Authentication Methods 22

Clients and servers that will select certificates using callback functions should select a cer-
tificate according the peer’s signature algorithm preferences. To get those preferences use
[gnutls sign algorithm get requested], page 205.

Certificate verification is possible by loading the trusted authorities into the
credentials structure by using [gnutls certificate set x509 trust file], page 139 or
[gnutls certificate set openpgp keyring file], page 284 for openpgp keys. Note
however that the peer’s certificate is not automatically verified, you should call
[gnutls certificate verify peers2], page 141, after a successful handshake, to verify the
signatures of the certificate. An alternative way, which reports a more detailed verification
output, is to use [gnutls certificate get peers], page 131 to obtain the raw certificate of the
peer and verify it using the functions discussed in Section 5.1 [The X.509 trust model],
page 28.

In a handshake, the negotiated cipher suite depends on the certificate’s parameters, so not
all key exchange methods will be available with some certificates. GnuTLS will disable
ciphersuites that are not compatible with the key, or the enabled authentication methods.
For example keys marked as sign-only, will not be able to access the plain RSA ciphersuites,
but only the DHE_RSA ones. It is recommended not to use RSA keys for both signing and
encryption. If possible use the same key for the DHE_RSA and RSA_EXPORT ciphersuites,
which use signing, and a different key for the plain RSA ciphersuites, which use encryption.
All the key exchange methods shown below are available in certificate authentication.

Note that the DHE key exchange methods are generally slower1 than plain RSA and require
Diffie Hellman parameters to be generated and associated with a credentials structure, by
the server. The RSA-EXPORT method also requires 512 bit RSA parameters, that should also
be generated and associated with the credentials structure. See the functions:

• [gnutls dh params generate2], page 155

• [gnutls certificate set dh params], page 133

• [gnutls rsa params generate2], page 198

• [gnutls certificate set rsa export params], page 134

Sometimes in order to avoid bottlenecks in programs it is useful to store and read parameters
from formats that can be generated by external programs such as certtool. This is possible
with GnuTLS by using the following functions:

• [gnutls dh params import pkcs3], page 155

• [gnutls rsa params import pkcs1], page 198

• [gnutls dh params export pkcs3], page 154

• [gnutls rsa params export pkcs1], page 197

Key exchange algorithms for OpenPGP and X.509 certificates:

RSA: The RSA algorithm is used to encrypt a key and send it to the peer. The
certificate must allow the key to be used for encryption.

1 It really depends on the group used. Primes with lesser bits are always faster, but also easier to break.
Values less than 768 should not be used today

Chapter 4: Authentication Methods 23

RSA_EXPORT:

The RSA algorithm is used to encrypt a key and send it to the peer. In the
EXPORT algorithm, the server signs temporary RSA parameters of 512 bits
— which are considered weak — and sends them to the client.

DHE_RSA: The RSA algorithm is used to sign Ephemeral Diffie-Hellman parameters which
are sent to the peer. The key in the certificate must allow the key to be used
for signing. Note that key exchange algorithms which use Ephemeral Diffie-
Hellman parameters, offer perfect forward secrecy. That means that even if the
private key used for signing is compromised, it cannot be used to reveal past
session data.

DHE_DSS: The DSS algorithm is used to sign Ephemeral Diffie-Hellman parameters which
are sent to the peer. The certificate must contain DSA parameters to use this
key exchange algorithm. DSS stands for Digital Signature Standard.

4.2 Anonymous Authentication

The anonymous key exchange performs encryption but there is no indication of the identity
of the peer. This kind of authentication is vulnerable to a man in the middle attack, but
this protocol can be used even if there is no prior communication and trusted parties with
the peer, or when full anonymity is required. Unless really required, do not use anonymous
authentication. Available key exchange methods are shown below.

Note that the key exchange methods for anonymous authentication require Diffie-Hellman
parameters to be generated by the server and associated with an anonymous credentials
structure.

Supported anonymous key exchange algorithms:

ANON_DH: This algorithm exchanges Diffie-Hellman parameters.

4.3 Authentication using SRP

Authentication via the Secure Remote Password protocol, SRP2, is supported. The SRP

key exchange is an extension to the TLS protocol, and it is a password based authentication
(unlike X.509 or OpenPGP that use certificates). The two peers can be identified using a
single password, or there can be combinations where the client is authenticated using SRP

and the server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentication
schemes, is that SRP does not require the server to hold the user’s password. This kind of
protection is similar to the one used traditionally in the UNIX ‘/etc/passwd’ file, where the
contents of this file did not cause harm to the system security if they were revealed. The
SRP needs instead of the plain password something called a verifier, which is calculated
using the user’s password, and if stolen cannot be used to impersonate the user. Check
[TOMSRP] (see [Bibliography], page 376) for a detailed description of the SRP protocol and
the Stanford SRP libraries, which includes a PAM module that synchronizes the system’s
users passwords with the SRP password files. That way SRP authentication could be used
for all the system’s users.

2 SRP is described in [RFC2945] (see [Bibliography], page 376)

Chapter 4: Authentication Methods 24

The implementation in GnuTLS is based on paper [TLSSRP] (see [Bibliography], page 376).
The supported SRP key exchange methods are:

SRP: Authentication using the SRP protocol.

SRP_DSS: Client authentication using the SRP protocol. Server is authenticated using a
certificate with DSA parameters.

SRP_RSA: Client authentication using the SRP protocol. Server is authenticated using a
certificate with RSA parameters.

If clients supporting SRP know the username and password before the connection, should
initialize the client credentials and call the function [gnutls srp set client credentials],
page 209. Alternatively they could specify a callback function by using the function
[gnutls srp set client credentials function], page 208. This has the advantage that allows
probing the server for SRP support. In that case the callback function will be called twice
per handshake. The first time is before the ciphersuite is negotiated, and if the callback
returns a negative error code, the callback will be called again if SRP has been negotiated.
This uses a special TLS-SRP handshake idiom in order to avoid, in interactive applications,
to ask the user for SRP password and username if the server does not negotiate an SRP

ciphersuite.

In server side the default behaviour of GnuTLS is to read the usernames and SRP

verifiers from password files. These password files are the ones used by the Stanford
srp libraries and can be specified using the [gnutls srp set server credentials file],
page 209. If a different password file format is to be used, then the function
[gnutls srp set server credentials function], page 210, should be called, in order to set an
appropriate callback.

Some helper functions such as

• [gnutls srp verifier], page 210

• [gnutls srp base64 encode], page 208

• [gnutls srp base64 decode], page 207

are included in GnuTLS, and can be used to generate and maintain SRP verifiers and pass-
word files. A program to manipulate the required parameters for SRP authentication is also
included. See [srptool], page 123, for more information.

4.4 Authentication using PSK

Authentication using Pre-shared keys is a method to authenticate using usernames and
binary keys. This protocol avoids making use of public key infrastructure and expensive
calculations, thus it is suitable for constraint clients.

The implementation in GnuTLS is based on paper [TLSPSK] (see [Bibliography], page 376).
The supported PSK key exchange methods are:

PSK: Authentication using the PSK protocol.

DHE-PSK: Authentication using the PSK protocol and Diffie-Hellman key exchange. This
method offers perfect forward secrecy.

Chapter 4: Authentication Methods 25

Clients supporting PSK should supply the username and key before the connection
to the client credentials by calling the function [gnutls psk set client credentials],
page 186. Alternatively they could specify a callback function by using the function
[gnutls psk set client credentials function], page 186. This has the advantage that the
callback will be called only if PSK has been negotiated.

In server side the default behaviour of GnuTLS is to read the usernames and PSK keys
from a password file. The password file should contain usernames and keys in hexadecimal
format. The name of the password file can be stored to the credentials structure by calling
[gnutls psk set server credentials file], page 187. If a different password file format is to
be used, then the function [gnutls psk set server credentials function], page 187, should be
used instead.

The server can help the client chose a suitable username and password, by sending a
hint. In the server, specify the hint by calling [gnutls psk set server credentials hint],
page 187. The client can retrieve the hint, for example in the callback function, using
[gnutls psk client get hint], page 185.

There is no mechanism to derive a PSK key from a password specified by the TLS PSK
document3. For password-based authentication check Section 4.3 [Authentication using
SRP], page 23.

Some helper functions such as:

• [gnutls hex encode], page 163

• [gnutls hex decode], page 163

are included in GnuTLS, and may be used to generate and maintain PSK keys.

4.5 Authentication and Credentials

In GnuTLS every key exchange method is associated with a credentials type. So in order to
enable to enable a specific method, the corresponding credentials type should be initialized
and set using [gnutls credentials set], page 146. A mapping is shown below.

Key exchange algorithms and the corresponding credential types:

Key exchange Client credentials Server credentials

KX_RSA

KX_DHE_RSA

KX_DHE_DSS

KX_RSA_EXPORT CRD_CERTIFICATE CRD_CERTIFICATE

KX_SRP_RSA CRD_SRP CRD_SRP

KX_SRP_DSS CRD_CERTIFICATE

KX_SRP CRD_SRP CRD_SRP

3 GnuTLS used to provide gnutls_psk_netconf_derive_key which follows the algorithm specified in
‘draft-ietf-netconf-tls-02.txt’. This method is deprecated and might be removed in later versions of
GnuTLS.

Chapter 4: Authentication Methods 26

KX_ANON_DH CRD_ANON CRD_ANON

KX_PSK CRD_PSK CRD_PSK

4.6 Parameters Stored in Credentials

Several parameters such as the ones used for Diffie-Hellman authentication are stored within
the credentials structures, so all sessions can access them. Those parameters are stored
in structures such as gnutls_dh_params_t and gnutls_rsa_params_t, and functions like
[gnutls certificate set dh params], page 133 and [gnutls certificate set rsa export params],
page 134 can be used to associate those parameters with the given credentials structure.

Since those parameters need to be renewed from time to time and a global structure
such as the credentials, may not be easy to modify since it is accessible by all sessions,
an alternative interface is available using a callback function. This can be set using the
[gnutls certificate set params function], page 133. An example is shown below.

#include <gnutls.h>

gnutls_rsa_params_t rsa_params;

gnutls_dh_params_t dh_params;

/* This function will be called once a session requests DH

* or RSA parameters. The parameters returned (if any) will

* be used for the first handshake only.

*/

static int get_params(gnutls_session_t session,

gnutls_params_type_t type,

gnutls_params_st *st)

{

if (type == GNUTLS_PARAMS_RSA_EXPORT)

st->params.rsa_export = rsa_params;

else if (type == GNUTLS_PARAMS_DH)

st->params.dh = dh_params;

else return -1;

st->type = type;

/* do not deinitialize those parameters.

*/

st->deinit = 0;

return 0;

}

int main()

{

gnutls_certificate_credentials_t cert_cred;

Chapter 4: Authentication Methods 27

initialize_params();

/* ...

*/

gnutls_certificate_set_params_function(cert_cred, get_params);

}

Chapter 5: More on Certificate Authentication 28

5 More on Certificate Authentication

5.1 The X.509 Trust Model

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities
exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

One needs to trust one or more CAs for his secure communications. In that case only
the certificates issued by the trusted authorities are acceptable. See the figure above for a
typical example. The API for handling X.509 certificates is described at section [sec:x509api],
page 215. Some examples are listed below.

5.1.1 X.509 Certificates

An X.509 certificate usually contains information about the certificate holder, the signer,
a unique serial number, expiration dates and some other fields [PKIX] (see [Bibliography],
page 376) as shown in the table below.

version: The field that indicates the version of the certificate.

serialNumber:

This field holds a unique serial number per certificate.

issuer: Holds the issuer’s distinguished name.

validity:

The activation and expiration dates.

Chapter 5: More on Certificate Authentication 29

subject: The subject’s distinguished name of the certificate.

extensions:

The extensions are fields only present in version 3 certificates.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished
name and in the ASN.1 notation is a sequence of several object IDs with their corresponding
values. Some of available OIDs to be used in an X.509 distinguished name are defined in
‘gnutls/x509.h’.

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version
1 certificates do not support the extensions field so it is not possible to distinguish a CA
from a person, thus their usage should be avoided.

The validity dates are there to indicate the date that the specific certificate was activated
and the date the certificate’s key would be considered invalid.

Certificate extensions are there to include information about the certificate’s subject that
did not fit in the typical certificate fields. Those may be e-mail addresses, flags that indicate
whether the belongs to a CA etc. All the supported X.509 version 3 extensions are shown
in the table below.

subject key id (2.5.29.14):

An identifier of the key of the subject.

authority key id (2.5.29.35):

An identifier of the authority’s key used to sign the certificate.

subject alternative name (2.5.29.17):

Alternative names to subject’s distinguished name.

key usage (2.5.29.15):

Constraints the key’s usage of the certificate.

extended key usage (2.5.29.37):

Constraints the purpose of the certificate.

basic constraints (2.5.29.19):

Indicates whether this is a CA certificate or not, and specify the maximum path
lengths of certificate chains.

CRL distribution points (2.5.29.31):

This extension is set by the CA, in order to inform about the issued CRLs.

Proxy Certification Information (1.3.6.1.5.5.7.1.14):

Proxy Certificates includes this extension that contains the OID of the proxy
policy language used, and can specify limits on the maximum lengths of proxy
chains. Proxy Certificates are specified in [RFC3820] (see [Bibliography],
page 376).

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t type
and the corresponding private keys with the gnutls_x509_privkey_t type. All the avail-
able functions for X.509 certificate handling have their prototypes in ‘gnutls/x509.h’. An
example program to demonstrate the X.509 parsing capabilities can be found at section
[ex:x509-info], page 101.

Chapter 5: More on Certificate Authentication 30

5.1.2 Verifying X.509 Certificate Paths

Verifying certificate paths is important in X.509 authentication. For this purpose the
function [gnutls x509 crt verify], page 272 is provided. The output of this function is
the bitwise OR of the elements of the gnutls_certificate_status_t enumeration.
A detailed description of these elements can be found in figure below. The function
[gnutls certificate verify peers2], page 141 is equivalent to the previous one, and will verify
the peer’s certificate in a TLS session.

GNUTLS_CERT_INVALID:

The certificate is not signed by one of the known authorities, or the signature
is invalid.

GNUTLS_CERT_REVOKED:

The certificate has been revoked by its CA.

GNUTLS_CERT_SIGNER_NOT_FOUND:

The certificate’s issuer is not known. This is the case when the issuer is not in
the trusted certificates list.

GNUTLS_CERT_SIGNER_NOT_CA:

The certificate’s signer was not a CA. This may happen if this was a version 1
certificate, which is common with some CAs, or a version 3 certificate without
the basic constrains extension.

GNUTLS_CERT_INSECURE_ALGORITHM:

The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

There is also to possibility to pass some input to the verification functions in the form
of flags. For [gnutls x509 crt verify], page 272 the flags are passed straightforward,
but [gnutls certificate verify peers2], page 141 depends on the flags set by calling
[gnutls certificate set verify flags], page 134. All the available flags are part of the
enumeration [gnutls certificate verify flags], page 30 and are explained in the table below.

GNUTLS_VERIFY_DISABLE_CA_SIGN:

If set a signer does not have to be a certificate authority. This flag should
normaly be disabled, unless you know what this means.

GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT:

Allow only trusted CA certificates that have version 1. This is safer than
GNUTLS VERIFY ALLOW ANY X509 V1 CA CRT, and should be used in-
stead. That way only signers in your trusted list will be allowed to have cer-
tificates of version 1.

GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT:

Allow CA certificates that have version 1 (both root and intermediate). This
is dangerous since those haven’t the basicConstraints extension. Must be used
in combination with GNUTLS VERIFY ALLOW X509 V1 CA CRT.

GNUTLS_VERIFY_DO_NOT_ALLOW_SAME:

If a certificate is not signed by anyone trusted but exists in the trusted CA list
do not treat it as trusted.

Chapter 5: More on Certificate Authentication 31

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2:

Allow certificates to be signed using the old MD2 algorithm.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5:

Allow certificates to be signed using the broken MD5 algorithm.

Although the verification of a certificate path indicates that the certificate is signed by
trusted authority, does not reveal anything about the peer’s identity. It is required to verify
if the certificate’s owner is the one you expect. For more information consult [RFC2818]
(see [Bibliography], page 376) and section [ex:verify], page 51 for an example.

5.1.3 PKCS #10 Certificate Requests

A certificate request is a structure, which contain information about an applicant of a
certificate service. It usually contains a private key, a distinguished name and secondary
data such as a challenge password. GnuTLS supports the requests defined in PKCS #10
[RFC2986] (see [Bibliography], page 376). Other certificate request’s format such as PKIX’s
[RFC4211] (see [Bibliography], page 376) are not currently supported.

In GnuTLS the PKCS #10 structures are handled using the gnutls_x509_crq_t type. An
example of a certificate request generation can be found at section [ex:crq], page 104.

5.1.4 PKCS #12 Structures

A PKCS #12 structure [PKCS12] (see [Bibliography], page 376) usually contains a user’s
private keys and certificates. It is commonly used in browsers to export and import the
user’s identities.

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This
is an abstract type that may hold several gnutls_pkcs12_bag_t types. The Bag types are
the holders of the actual data, which may be certificates, private keys or encrypted data.
An Bag of type encrypted should be decrypted in order for its data to be accessed.

An example of a PKCS #12 structure generation can be found at section [ex:pkcs12],
page 106.

5.2 The OpenPGP Trust Model

The OpenPGP key authentication relies on a distributed trust model, called the “web of
trust”. The “web of trust” uses a decentralized system of trusted introducers, which are
the same as a CA. OpenPGP allows anyone to sign anyone’s else public key. When Alice

Chapter 5: More on Certificate Authentication 32

signs Bob’s key, she is introducing Bob’s key to anyone who trusts Alice. If someone trusts
Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer.

For example: If David trusts Alice to be an introducer, and Alice signed Bob’s key, Dave
also trusts Bob’s key to be the real one.

There are some key points that are important in that model. In the example Alice has to
sign Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also
make Dave falsely believe that this is Bob’s key. Dave has also the responsibility to know
who to trust. This model is similar to real life relations.

Just see how Charlie behaves in the previous example. Although he has signed Bob’s key
- because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an
introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that
Bob is lazy enough, and signs other people’s keys without being sure that they belong to
the actual owner.

5.2.1 OpenPGP Keys

In GnuTLS the OpenPGP key structures [RFC2440] (see [Bibliography], page 376) are han-
dled using the gnutls_openpgp_crt_t type and the corresponding private keys with the
gnutls_openpgp_privkey_t type. All the prototypes for the key handling functions can
be found at ‘gnutls/openpgp.h’.

5.2.2 Verifying an OpenPGP Key

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones,
and do not use the features of the “web of trust”. For that reason, if the verifica-
tion needs are complex, the assistance of external tools like GnuPG and GPGME
(http://www.gnupg.org/related_software/gpgme/) is recommended.

http://www.gnupg.org/related_software/gpgme/

Chapter 5: More on Certificate Authentication 33

There is one verification function in GnuTLS, the [gnutls openpgp crt verify ring], page 293.
This checks an OpenPGP key against a given set of public keys (keyring) and returns the
key status. The key verification status is the same as in X.509 certificates, although the
meaning and interpretation are different. For example an OpenPGP key may be valid, if
the self signature is ok, even if no signers were found. The meaning of verification status is
shown in the figure below.

CERT_INVALID:

A signature on the key is invalid. That means that the key was modified by
somebody, or corrupted during transport.

CERT_REVOKED:

The key has been revoked by its owner.

CERT_SIGNER_NOT_FOUND:

The key was not signed by a known signer.

GNUTLS_CERT_INSECURE_ALGORITHM:

The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

5.3 PKCS #11 tokens

5.3.1 Introduction

This section copes with the PKCS #11 [PKCS11] (see [Bibliography], page 376) support in
GnuTLS. PKCS #11 is plugin API allowing applications to access cryptographic operations
on a token, as well as to objects residing on the token. A token can be a real hardware token
such as a smart card, or it can be a software component such as Gnome Keyring. The objects
residing on such token can be certificates, public keys, private keys or even plain data or
secret keys. Of those certificates and public/private key pairs can be used with GnuTLS. Its
main advantage is that it allows operations on private key objects such as decryption and
signing without accessing the key itself.

Chapter 5: More on Certificate Authentication 34

Moreover it can be used to allow all applications in the same operating system to access
shared cryptographic keys and certificates in a uniform way, as in the following picture.

5.3.2 Initialization

To allow all the GnuTLS applications to access PKCS #11 tokens it is adviceable to use
/etc/gnutls/pkcs11.conf. This file has the following format:

load=/usr/lib/opensc-pkcs11.so

load=/usr/lib/gnome-keyring/gnome-keyring-pkcs11.so

If you use this file, then there is no need for other initialization in GnuTLS, except for the
PIN and token functions. Those allow retrieving a PIN when accessing a protected object,
such as a private key, as well as probe the user to insert the token. All the initialization
functions are below.

• [gnutls pkcs11 init], page 172: Global initialization

• [gnutls pkcs11 deinit], page 172: Global deinitialization

• [gnutls pkcs11 set token function], page 176: Sets the token insertion function

• [gnutls pkcs11 set pin function], page 176: Sets the PIN request function

• [gnutls pkcs11 add provider], page 170: Adds an additional PKCS #11 provider

Note that due to limitations of PKCS #11 there might be issues when multiple libraries are
sharing a module. If this is the case we suggest to use p11-kit1 that provides an intermediate
module to control access to resources over the multiple users.

5.3.3 Reading Objects

All PKCS #11 objects are referenced by GnuTLS functions by URLs as described in draft-

pechanec-pkcs11uri-03. For example a public key on a smart card may be referenced
as:

1 http://p11-glue.freedesktop.org/

Chapter 5: More on Certificate Authentication 35

pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315; \

manufacturer=EnterSafe;object=test1;objecttype=public;\

id=32:f1:53:f3:e3:79:90:b0:86:24:14:10:77:ca:5d:ec:2d:15:fa:ed

while the smart card itself can be referenced as:

pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315;manufacturer=EnterSafe

Objects can be accessed with the following functions

• [gnutls pkcs11 obj init], page 174: Initializes an object

• [gnutls pkcs11 obj import url], page 173: To import an object from a url

• [gnutls pkcs11 obj export url], page 172: To export the URL of the object

• [gnutls pkcs11 obj deinit], page 172: To deinitialize an object

• [gnutls pkcs11 obj export], page 173: To export data associated with object

• [gnutls pkcs11 obj get info], page 173: To obtain information about an object

• [gnutls pkcs11 obj list import url], page 174: To mass load of objects

• [gnutls x509 crt import pkcs11], page 215: Import a certificate object

• [gnutls x509 crt import pkcs11 url], page 214: Helper function to directly import a
URL into a certificate

• [gnutls x509 crt list import pkcs11], page 215: Mass import of certificates

Functions that relate to token handling are shown below

• [gnutls pkcs11 token init], page 177: Initializes a token

• [gnutls pkcs11 token set pin], page 178: Sets the token user’s PIN

• [gnutls pkcs11 token get url], page 177: Returns the URL of a token

• [gnutls pkcs11 token get info], page 176: Obtain information about a token

• [gnutls pkcs11 token get flags], page 176: Returns flags about a token (i.e. hardware
or software)

The following example will list all tokens.

int i;

char* url;

gnutls_global_init();

for (i=0;;i++) {

ret = gnutls_pkcs11_token_get_url(i, &url);

if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)

break;

if (ret < 0)

exit(1);

fprintf(stdout, "Token[%d]: URL: %s\n", i, url);

gnutls_free(url);

}

gnutls_global_deinit();

Chapter 5: More on Certificate Authentication 36

The next one will list all certificates in a token, that have a corresponding private key:

gnutls_pkcs11_obj_t *obj_list;

unsigned int obj_list_size = 0;

gnutls_datum_t cinfo;

int i;

obj_list_size = 0;

ret = gnutls_pkcs11_obj_list_import_url(obj_list, NULL, url, \

GNUTLS_PKCS11_OBJ_ATTR_CRT_WITH_PRIVKEY);

if (ret < 0 && ret != GNUTLS_E_SHORT_MEMORY_BUFFER)

exit(1);

/* no error checking from now on */

obj_list = malloc(sizeof(*obj_list)*obj_list_size);

gnutls_pkcs11_obj_list_import_url(obj_list, &obj_list_size, url, flags);

/* now all certificates are in obj_list */

for (i=0;i<obj_list_size;i++) {

gnutls_x509_crt_init(&xcrt);

gnutls_x509_crt_import_pkcs11(xcrt, obj_list[i]);

gnutls_x509_crt_print (xcrt, GNUTLS_CRT_PRINT_FULL, &cinfo);

fprintf(stdout, "cert[%d]:\n %s\n\n", cinfo.data);

gnutls_free(cinfo.data);

gnutls_x509_crt_deinit(&xcrt);

}

5.3.4 Writing Objects

With GnuTLS you can copy existing private keys and certificates to a token. This can be
achieved with the following functions

• [gnutls pkcs11 delete url], page 172: To delete an object

• [gnutls pkcs11 copy x509 privkey], page 171: To copy a private key to a token

• [gnutls pkcs11 copy x509 crt], page 171: To copy a certificate to a token

5.3.5 Using a PKCS #11 token with TLS

It is possible to use a PKCS #11 token to a TLS session, as shown in [ex:pkcs11-client],
page 67. In addition the following functions can be used to load PKCS #11 key and
certificates.

• [gnutls certificate set x509 trust file], page 139: If given a PKCS #11 URL will load
the trusted certificates from it.

Chapter 5: More on Certificate Authentication 37

• [gnutls certificate set x509 key file], page 136: Will also load PKCS #11 URLs for
keys and certificates.

5.4 Abstract data types

Since there are many forms of a public or private keys supported by GnuTLS such as
X.509, OpenPGP, or PKCS #11 it is desirable to allow common operations on them. For
these reasons the abstract gnutls_privkey_t and gnutls_pubkey_t were introduced in
gnutls/abstract.h header. Those types are initialized using a specific type of key and
then can be used to perform operations in an abstract way. For example in order for
someone to sign an X.509 certificate with a key that resides in a smart he has to follow the
steps below:

#inlude <gnutls/abstract.h>

#inlude <gnutls/pkcs11.h>

void sign_cert(gnutls_x509_crt_t to_be_signed)

{

gnutls_pkcs11_privkey_t ca_key;

gnutls_x509_crt_t ca_cert;

gnutls_privkey_t abs_key;

/* load the PKCS #11 key and certificates */

gnutls_pkcs11_privkey_init(&ca_key);

gnutls_pkcs11_privkey_import_url(ca_key, key_url);

gnutls_x509_crt_init(&ca_cert);

gnutls_x509_crt_import_pkcs11_url(&ca_cert, cert_url);

/* initialize the abstract key */

gnutls_privkey_init(&abs_key);

gnutls_privkey_import_pkcs11(abs_key, ca_key);

/* sign the certificate to be signed */

gnutls_x509_crt_privkey_sign(to_be_signed, ca_cert, ca_key, GNUTLS_DIG_SHA1, 0);

}

5.5 Digital Signatures

In this section we will provide some information about digital signatures, how they work,
and give the rationale for disabling some of the algorithms used.

Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess
the input to the signature algorithm. This works as long as it is difficult enough to generate
two different messages with the same hash algorithm output. In that case the same signature

Chapter 5: More on Certificate Authentication 38

could be used as a proof for both messages. Nobody wants to sign an innocent message of
donating 1 e to Greenpeace and find out that he donated 1.000.000 e to Bad Inc.

For a hash algorithm to be called cryptographic the following three requirements must hold:

1. Preimage resistance. That means the algorithm must be one way and given the output
of the hash function H(x), it is impossible to calculate x.

2. 2nd preimage resistance. That means that given a pair x, y with y = H(x) it is
impossible to calculate an x′ such that y = H(x′).

3. Collision resistance. That means that it is impossible to calculate random x and x′

such H(x′) = H(x).

The last two requirements in the list are the most important in digital signatures. These
protect against somebody who would like to generate two messages with the same hash out-
put. When an algorithm is considered broken usually it means that the Collision resistance
of the algorithm is less than brute force. Using the birthday paradox the brute force attack
takes 2(hash size)/2 operations. Today colliding certificates using the MD5 hash algorithm
have been generated as shown in [WEGER] (see [Bibliography], page 376).

There has been cryptographic results for the SHA-1 hash algorithms as well, although they
are not yet critical. Before 2004, MD5 had a presumed collision strength of 264, but it
has been showed to have a collision strength well under 250. As of November 2005, it is
believed that SHA-1’s collision strength is around 263. We consider this sufficiently hard so
that we still support SHA-1. We anticipate that SHA-256/386/512 will be used in publicly-
distributed certificates in the future. When 263 can be considered too weak compared to
the computer power available sometime in the future, SHA-1 will be disabled as well. The
collision attacks on SHA-1 may also get better, given the new interest in tools for creating
them.

5.5.1 Trading Security for Interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and get a
[GNUTLS CERT INSECURE ALGORITHM], page 30 validation error (see Section 5.1.2
[Verifying X.509 certificate paths], page 30), it means that somewhere in the certificate
chain there is a certificate signed using RSA-MD2 or RSA-MD5. These two digital signature
algorithms are considered broken, so GnuTLS fail when attempting to verify the certificate.
In some situations, it may be useful to be able to verify the certificate chain anyway,
assuming an attacker did not utilize the fact that these signatures algorithms are broken.
This section will give help on how to achieve that.

First, it is important to know that you do not have to enable any of the flags discussed here
to be able to use trusted root CA certificates signed using RSA-MD2 or RSA-MD5. The only
attack today is that it is possible to generate certificates with colliding signatures (collision
resistance); you cannot generate a certificate that has the same signature as an already
existing signature (2nd preimage resistance).

If you are using [gnutls certificate verify peers2], page 141 to verify the certificate chain,
you can call [gnutls certificate set verify flags], page 134 with the GNUTLS_VERIFY_ALLOW_
SIGN_RSA_MD2 or GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 flag, as in:

gnutls_certificate_set_verify_flags (x509cred,

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5);

Chapter 5: More on Certificate Authentication 39

This will tell the verifier algorithm to enable RSA-MD5 when verifying the certificates.

If you are using [gnutls x509 crt verify], page 272 or [gnutls x509 crt list verify], page 263,
you can pass the GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 parameter directly in the flags

parameter.

If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall back
to using them after warning the user. If you wish to inspect the certificate chain yourself, you
can use [gnutls certificate get peers], page 131 to extract the raw server’s certificate chain,
then use [gnutls x509 crt import], page 263 to parse each of the certificates, and then use
[gnutls x509 crt get signature algorithm], page 259 to find out the signing algorithm used
for each certificate. If any of the intermediary certificates are using GNUTLS_SIGN_RSA_MD2

or GNUTLS_SIGN_RSA_MD5, you could present a warning.

Chapter 6: How To Use TLS in Application Protocols 40

6 How To Use TLS in Application Protocols

This chapter is intended to provide some hints on how to use the TLS over simple custom
made application protocols. The discussion below mainly refers to the TCP/IP transport
layer but may be extended to other ones too.

6.1 Separate Ports

Traditionally SSL was used in application protocols by assigning a new port number for
the secure services. That way two separate ports were assigned, one for the non secure
sessions, and one for the secured ones. This has the benefit that if a user requests a secure
session then the client will try to connect to the secure port and fail otherwise. The only
possible attack with this method is a denial of service one. The most famous example of this
method is the famous “HTTP over TLS” or HTTPS protocol [RFC2818] (see [Bibliography],
page 376).

Despite its wide use, this method is not as good as it seems. This approach starts the
TLS Handshake procedure just after the client connects on the —so called— secure port.
That way the TLS protocol does not know anything about the client, and popular methods
like the host advertising in HTTP do not work1. There is no way for the client to say “I
connected to YYY server” before the Handshake starts, so the server cannot possibly know
which certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports,
this approach was soon obsoleted.

6.2 Upward Negotiation

Other application protocols2 use a different approach to enable the secure layer. They use
something called the “TLS upgrade” method. This method is quite tricky but it is more
flexible. The idea is to extend the application protocol to have a “STARTTLS” request,
whose purpose it to start the TLS protocols just after the client requests it. This is a really
neat idea and does not require an extra port.

This method is used by almost all modern protocols and there is even the [RFC2817] (see
[Bibliography], page 376) paper which proposes extensions to HTTP to support it.

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See
a typical conversation of a hypothetical protocol:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

1 See also the Server Name Indication extension on [serverind], page 16.
2 See LDAP, IMAP etc.

Chapter 6: How To Use TLS in Application Protocols 41

*** TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

And see an example of a conversation where someone is acting in between:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON’T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was dummy enough to send the confidential
data in the clear.

How to avoid the above attack? As you may have already thought this one is easy to avoid.
The client has to ask the user before it connects whether the user requests TLS or not. If
the user answered that he certainly wants the secure layer the last conversation should be:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON’T HAVE THIS CAPABILITY

CLIENT: BYE

(the client notifies the user that the secure connection was not possible)

This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is
that the server may request additional data before the TLS Handshake protocol starts, in
order to send the correct certificate, use the correct password file3, or anything else!

3 in SRP authentication

Chapter 7: How To Use GnuTLS in Applications 42

7 How To Use GnuTLS in Applications

7.1 Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

7.1.1 Headers

All the data types and functions of the GnuTLS library are defined in the header file
‘gnutls/gnutls.h’. This must be included in all programs that make use of the GnuTLS

library.

The extra functionality of the GnuTLS-extra library is available by including the header file
‘gnutls/extra.h’ in your programs.

7.1.2 Initialization

GnuTLS must be initialized before it can be used. The library is initialized by calling
[gnutls global init], page 158. The resources allocated by the initialization process can be
released if the application no longer has a need to call GnuTLS functions, this is done by
calling [gnutls global deinit], page 158.

The extra functionality of the GnuTLS-extra library is available after calling
[gnutls global init extra], page 283.

In order to take advantage of the internationalisation features in GnuTLS, such as trans-
lated error messages, the application must set the current locale using setlocale before
initializing GnuTLS.

7.1.3 Version Check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits all re-
quirements. Even with binary compatibility new features may have been introduced but due
to problem with the dynamic linker an old version is actually used. So you may want to check
that the version is okay right after program startup. See the function [gnutls check version],
page 141.

7.1.4 Debugging

In many cases things may not go as expected and further information, to assist debugging,
from GnuTLS is desired. Those are the case where the [gnutls global set log level], page 159
and [gnutls global set log function], page 158 are to be used. Those will print verbose
information on the GnuTLS functions internal flow.

7.1.5 Building the Source

If you want to compile a source file including the ‘gnutls/gnutls.h’ header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured. To
solve this problem, the library uses the external package pkg-config that knows the path

Chapter 7: How To Use GnuTLS in Applications 43

to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
gnutls. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config gnutls --cflags‘

Adding the output of ‘pkg-config gnutls --cflags’ to the compilers command line will
ensure that the compiler can find the ‘gnutls/gnutls.h’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config

gnutls can be used. For convenience, this option also outputs all other options that are
required to link the program with the libarary (for instance, the ‘-ltasn1’ option). The
example shows how to link ‘foo.o’ with the library to a program foo.

gcc -o foo foo.o ‘pkg-config gnutls --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config gnutls --cflags --libs‘

7.2 Multi-Threaded Applications

Although the GnuTLS library is thread safe by design, some parts of the cryptographic
backend, such as the random generator, are not. Applications can either call
[gnutls global init], page 158 and use the default operating system provided locks (i.e.
pthreads on GNU/Linux), or specify manualy the locking system using the function
[gnutls global set mutex], page 159 before calling [gnutls global init], page 158. Setting
manually mutexes is recommended only to applications that have full control of the
underlying libraries. If this is not the case, the use of the operating system defaults is
recommended.

There are helper macros to help you properly initialize the libraries. Examples are shown
below.

• POSIX threads in GNU/Linux

#include <gnutls.h>

#include <errno.h>

#include <pthread.h>

int main()

{

gnutls_global_init();

}

• Other thread packages

int main()

{

gnutls_global_mutex_set (mutex_init, mutex_deinit, mutex_lock, mutex_unlock);

gnutls_global_init();

}

Chapter 7: How To Use GnuTLS in Applications 44

7.3 Client Examples

This section contains examples of TLS and SSL clients, using GnuTLS. Note that these exam-
ples contain little or no error checking. Some of the examples require functions implemented
by another example.

7.3.1 Simple Client Example with Anonymous Authentication

The simplest client using TLS is the one that doesn’t do any authentication. This means
no external certificates or passwords are needed to set up the connection. As could be
expected, the connection is vulnerable to man-in-the-middle (active or redirection) attacks.
However, the data is integrity and privacy protected.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

/* A very basic TLS client, with anonymous authentication.

*/

#define MAX_BUF 1024

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);

extern void tcp_close (int sd);

int

main (void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

gnutls_anon_client_credentials_t anoncred;

/* Need to enable anonymous KX specifically. */

gnutls_global_init ();

gnutls_anon_allocate_client_credentials (&anoncred);

Chapter 7: How To Use GnuTLS in Applications 45

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set_direct (session, "PERFORMANCE:+ANON-DH:!ARCFOUR-128",

NULL);

/* put the anonymous credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);

/* connect to the peer

*/

sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

Chapter 7: How To Use GnuTLS in Applications 46

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_anon_free_client_credentials (anoncred);

gnutls_global_deinit ();

return 0;

}

7.3.2 Simple Client Example with X.509 Certificate Support

Let’s assume now that we want to create a TCP client which communicates with servers
that use X.509 or OpenPGP certificate authentication. The following client is a very simple
TLS client, it does not support session resuming, not even certificate verification. The TCP
functions defined in this example are used in most of the other examples below, without
redefining them.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

/* A very basic TLS client, with X.509 authentication.

*/

Chapter 7: How To Use GnuTLS in Applications 47

#define MAX_BUF 1024

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);

extern void tcp_close (int sd);

int

main (void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

const char *err;

gnutls_certificate_credentials_t xcred;

gnutls_global_init ();

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */

ret = gnutls_priority_set_direct (session, "PERFORMANCE", &err);

if (ret < 0)

{

if (ret == GNUTLS_E_INVALID_REQUEST)

{

fprintf (stderr, "Syntax error at: %s\n", err);

}

exit (1);

}

/* put the x509 credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

*/

Chapter 7: How To Use GnuTLS in Applications 48

sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

Chapter 7: How To Use GnuTLS in Applications 49

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

return 0;

}

7.3.3 Obtaining Session Information

Most of the times it is desirable to know the security properties of the current established
session. This includes the underlying ciphers and the protocols involved. That is the
purpose of the following function. Note that this function will print meaningful values only
if called after a successful [gnutls handshake], page 161.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

/* This function will print some details of the

* given session.

*/

int

print_info (gnutls_session_t session)

{

const char *tmp;

gnutls_credentials_type_t cred;

gnutls_kx_algorithm_t kx;

/* print the key exchange’s algorithm name

*/

kx = gnutls_kx_get (session);

tmp = gnutls_kx_get_name (kx);

printf ("- Key Exchange: %s\n", tmp);

/* Check the authentication type used and switch

* to the appropriate.

*/

cred = gnutls_auth_get_type (session);

Chapter 7: How To Use GnuTLS in Applications 50

switch (cred)

{

case GNUTLS_CRD_IA:

printf ("- TLS/IA session\n");

break;

#ifdef ENABLE_SRP

case GNUTLS_CRD_SRP:

printf ("- SRP session with username %s\n",

gnutls_srp_server_get_username (session));

break;

#endif

case GNUTLS_CRD_PSK:

/* This returns NULL in server side.

*/

if (gnutls_psk_client_get_hint (session) != NULL)

printf ("- PSK authentication. PSK hint ’%s’\n",

gnutls_psk_client_get_hint (session));

/* This returns NULL in client side.

*/

if (gnutls_psk_server_get_username (session) != NULL)

printf ("- PSK authentication. Connected as ’%s’\n",

gnutls_psk_server_get_username (session));

break;

case GNUTLS_CRD_ANON: /* anonymous authentication */

printf ("- Anonymous DH using prime of %d bits\n",

gnutls_dh_get_prime_bits (session));

break;

case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */

/* Check if we have been using ephemeral Diffie-Hellman.

*/

if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS)

{

printf ("\n- Ephemeral DH using prime of %d bits\n",

gnutls_dh_get_prime_bits (session));

}

/* if the certificate list is available, then

* print some information about it.

*/

print_x509_certificate_info (session);

Chapter 7: How To Use GnuTLS in Applications 51

} /* switch */

/* print the protocol’s name (ie TLS 1.0)

*/

tmp = gnutls_protocol_get_name (gnutls_protocol_get_version (session));

printf ("- Protocol: %s\n", tmp);

/* print the certificate type of the peer.

* ie X.509

*/

tmp =

gnutls_certificate_type_get_name (gnutls_certificate_type_get (session));

printf ("- Certificate Type: %s\n", tmp);

/* print the compression algorithm (if any)

*/

tmp = gnutls_compression_get_name (gnutls_compression_get (session));

printf ("- Compression: %s\n", tmp);

/* print the name of the cipher used.

* ie 3DES.

*/

tmp = gnutls_cipher_get_name (gnutls_cipher_get (session));

printf ("- Cipher: %s\n", tmp);

/* Print the MAC algorithms name.

* ie SHA1

*/

tmp = gnutls_mac_get_name (gnutls_mac_get (session));

printf ("- MAC: %s\n", tmp);

return 0;

}

7.3.4 Verifying Peer’s Certificate

A TLS session is not secure just after the handshake procedure has finished. It must be
considered secure, only after the peer’s certificate and identity have been verified. That is,
you have to verify the signature in peer’s certificate, the hostname in the certificate, and
expiration dates. Just after this step you should treat the connection as being a secure one.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

Chapter 7: How To Use GnuTLS in Applications 52

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

/* A very basic TLS client, with X.509 authentication and server certificate

* verification.

*/

#define MAX_BUF 1024

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);

extern void tcp_close (int sd);

/* This function will try to verify the peer’s certificate, and

* also check if the hostname matches, and the activation, expiration dates.

*/

static int

verify_certificate_callback (gnutls_session_t session)

{

unsigned int status;

const gnutls_datum_t *cert_list;

unsigned int cert_list_size;

int ret;

gnutls_x509_crt_t cert;

const char *hostname;

/* read hostname */

hostname = gnutls_session_get_ptr (session);

/* This verification function uses the trusted CAs in the credentials

* structure. So you must have installed one or more CA certificates.

*/

ret = gnutls_certificate_verify_peers2 (session, &status);

if (ret < 0)

{

printf ("Error\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

if (status & GNUTLS_CERT_INVALID)

printf ("The certificate is not trusted.\n");

Chapter 7: How To Use GnuTLS in Applications 53

if (status & GNUTLS_CERT_SIGNER_NOT_FOUND)

printf ("The certificate hasn’t got a known issuer.\n");

if (status & GNUTLS_CERT_REVOKED)

printf ("The certificate has been revoked.\n");

if (status & GNUTLS_CERT_EXPIRED)

printf ("The certificate has expired\n");

if (status & GNUTLS_CERT_NOT_ACTIVATED)

printf ("The certificate is not yet activated\n");

/* Up to here the process is the same for X.509 certificates and

* OpenPGP keys. From now on X.509 certificates are assumed. This can

* be easily extended to work with openpgp keys as well.

*/

if (gnutls_certificate_type_get (session) != GNUTLS_CRT_X509)

return GNUTLS_E_CERTIFICATE_ERROR;

if (gnutls_x509_crt_init (&cert) < 0)

{

printf ("error in initialization\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

cert_list = gnutls_certificate_get_peers (session, &cert_list_size);

if (cert_list == NULL)

{

printf ("No certificate was found!\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

/* This is not a real world example, since we only check the first

* certificate in the given chain.

*/

if (gnutls_x509_crt_import (cert, &cert_list[0], GNUTLS_X509_FMT_DER) < 0)

{

printf ("error parsing certificate\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

if (!gnutls_x509_crt_check_hostname (cert, hostname))

{

printf ("The certificate’s owner does not match hostname ’%s’\n",

hostname);

Chapter 7: How To Use GnuTLS in Applications 54

return GNUTLS_E_CERTIFICATE_ERROR;

}

gnutls_x509_crt_deinit (cert);

/* notify gnutls to continue handshake normally */

return 0;

}

int

main (void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

const char *err;

gnutls_certificate_credentials_t xcred;

gnutls_global_init ();

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_verify_function (xcred, verify_certificate_callback);

gnutls_certificate_set_verify_flags (xcred,

GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT);

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

gnutls_session_set_ptr (session, (void *) "my_host_name");

/* Use default priorities */

ret = gnutls_priority_set_direct (session, "PERFORMANCE", &err);

if (ret < 0)

{

if (ret == GNUTLS_E_INVALID_REQUEST)

{

fprintf (stderr, "Syntax error at: %s\n", err);

}

exit (1);

}

Chapter 7: How To Use GnuTLS in Applications 55

/* put the x509 credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

*/

sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

Chapter 7: How To Use GnuTLS in Applications 56

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

return 0;

}

Another example is listed below which provides more detailed verification output, for ap-
plications that need it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

/* All the available CRLs

*/

gnutls_x509_crl_t *crl_list;

int crl_list_size;

/* All the available trusted CAs

*/

gnutls_x509_crt_t *ca_list;

int ca_list_size;

static void verify_cert2 (gnutls_x509_crt_t crt,

gnutls_x509_crt_t issuer,

gnutls_x509_crl_t * crl_list, int crl_list_size);

static void verify_last_cert (gnutls_x509_crt_t crt,

gnutls_x509_crt_t * ca_list, int ca_list_size,

gnutls_x509_crl_t * crl_list,

int crl_list_size);

Chapter 7: How To Use GnuTLS in Applications 57

/* This function will try to verify the peer’s certificate chain, and

* also check if the hostname matches, and the activation, expiration dates.

*/

void

verify_certificate_chain (gnutls_session_t session,

const char *hostname,

const gnutls_datum_t * cert_chain,

int cert_chain_length)

{

int i;

gnutls_x509_crt_t *cert;

cert = malloc (sizeof (*cert) * cert_chain_length);

/* Import all the certificates in the chain to

* native certificate format.

*/

for (i = 0; i < cert_chain_length; i++)

{

gnutls_x509_crt_init (&cert[i]);

gnutls_x509_crt_import (cert[i], &cert_chain[i], GNUTLS_X509_FMT_DER);

}

/* If the last certificate in the chain is self signed ignore it.

* That is because we want to check against our trusted certificate

* list.

*/

if (gnutls_x509_crt_check_issuer (cert[cert_chain_length - 1],

cert[cert_chain_length - 1]) > 0

&& cert_chain_length > 0)

{

cert_chain_length--;

}

/* Now verify the certificates against their issuers

* in the chain.

*/

for (i = 1; i < cert_chain_length; i++)

{

verify_cert2 (cert[i - 1], cert[i], crl_list, crl_list_size);

}

/* Here we must verify the last certificate in the chain against

* our trusted CA list.

*/

Chapter 7: How To Use GnuTLS in Applications 58

verify_last_cert (cert[cert_chain_length - 1],

ca_list, ca_list_size, crl_list, crl_list_size);

/* Check if the name in the first certificate matches our destination!

*/

if (!gnutls_x509_crt_check_hostname (cert[0], hostname))

{

printf ("The certificate’s owner does not match hostname ’%s’\n",

hostname);

}

for (i = 0; i < cert_chain_length; i++)

gnutls_x509_crt_deinit (cert[i]);

return;

}

/* Verifies a certificate against an other certificate

* which is supposed to be it’s issuer. Also checks the

* crl_list if the certificate is revoked.

*/

static void

verify_cert2 (gnutls_x509_crt_t crt, gnutls_x509_crt_t issuer,

gnutls_x509_crl_t * crl_list, int crl_list_size)

{

unsigned int output;

int ret;

size_t name_size;

char name[64];

/* Print information about the certificates to

* be checked.

*/

name_size = sizeof (name);

gnutls_x509_crt_get_dn (crt, name, &name_size);

fprintf (stderr, "\nCertificate: %s\n", name);

name_size = sizeof (name);

gnutls_x509_crt_get_issuer_dn (crt, name, &name_size);

fprintf (stderr, "Issued by: %s\n", name);

/* Get the DN of the issuer cert.

*/

name_size = sizeof (name);

Chapter 7: How To Use GnuTLS in Applications 59

gnutls_x509_crt_get_dn (issuer, name, &name_size);

fprintf (stderr, "Checking against: %s\n", name);

/* Do the actual verification.

*/

gnutls_x509_crt_verify (crt, &issuer, 1, 0, &output);

if (output & GNUTLS_CERT_INVALID)

{

fprintf (stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_FOUND)

fprintf (stderr, ": no issuer was found");

if (output & GNUTLS_CERT_SIGNER_NOT_CA)

fprintf (stderr, ": issuer is not a CA");

if (output & GNUTLS_CERT_NOT_ACTIVATED)

fprintf (stderr, ": not yet activated\n");

if (output & GNUTLS_CERT_EXPIRED)

fprintf (stderr, ": expired\n");

fprintf (stderr, "\n");

}

else

fprintf (stderr, "Trusted\n");

/* Check if the certificate is revoked.

*/

ret = gnutls_x509_crt_check_revocation (crt, crl_list, crl_list_size);

if (ret == 1)

{ /* revoked */

fprintf (stderr, "Revoked\n");

}

}

/* Verifies a certificate against our trusted CA list.

* Also checks the crl_list if the certificate is revoked.

*/

static void

verify_last_cert (gnutls_x509_crt_t crt,

gnutls_x509_crt_t * ca_list, int ca_list_size,

gnutls_x509_crl_t * crl_list, int crl_list_size)

{

unsigned int output;

int ret;

size_t name_size;

Chapter 7: How To Use GnuTLS in Applications 60

char name[64];

/* Print information about the certificates to

* be checked.

*/

name_size = sizeof (name);

gnutls_x509_crt_get_dn (crt, name, &name_size);

fprintf (stderr, "\nCertificate: %s\n", name);

name_size = sizeof (name);

gnutls_x509_crt_get_issuer_dn (crt, name, &name_size);

fprintf (stderr, "Issued by: %s\n", name);

/* Do the actual verification.

*/

gnutls_x509_crt_verify (crt, ca_list, ca_list_size,

GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT, &output);

if (output & GNUTLS_CERT_INVALID)

{

fprintf (stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_CA)

fprintf (stderr, ": Issuer is not a CA\n");

if (output & GNUTLS_CERT_NOT_ACTIVATED)

fprintf (stderr, ": Not yet activated\n");

if (output & GNUTLS_CERT_EXPIRED)

fprintf (stderr, ": Expired\n");

fprintf (stderr, "\n");

}

else

fprintf (stderr, "Trusted\n");

/* Check if the certificate is revoked.

*/

ret = gnutls_x509_crt_check_revocation (crt, crl_list, crl_list_size);

if (ret == 1)

{ /* revoked */

fprintf (stderr, "Revoked\n");

}

}

Chapter 7: How To Use GnuTLS in Applications 61

7.3.5 Using a Callback to Select the Certificate to Use

There are cases where a client holds several certificate and key pairs, and may not want to
load all of them in the credentials structure. The following example demonstrates the use
of the certificate selection callback.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

/* A TLS client that loads the certificate and key.

*/

#define MAX_BUF 1024

#define MSG "GET / HTTP/1.0\r\n\r\n"

#define CERT_FILE "cert.pem"

#define KEY_FILE "key.pem"

#define CAFILE "ca.pem"

extern int tcp_connect (void);

extern void tcp_close (int sd);

static int cert_callback (gnutls_session_t session,

const gnutls_datum_t * req_ca_rdn, int nreqs,

const gnutls_pk_algorithm_t * sign_algos,

int sign_algos_length, gnutls_retr2_st * st);

gnutls_x509_crt_t crt;

gnutls_x509_privkey_t key;

/* Helper functions to load a certificate and key

* files into memory.

Chapter 7: How To Use GnuTLS in Applications 62

*/

static gnutls_datum_t

load_file (const char *file)

{

FILE *f;

gnutls_datum_t loaded_file = { NULL, 0 };

long filelen;

void *ptr;

if (!(f = fopen (file, "r"))

|| fseek (f, 0, SEEK_END) != 0

|| (filelen = ftell (f)) < 0

|| fseek (f, 0, SEEK_SET) != 0

|| !(ptr = malloc ((size_t) filelen))

|| fread (ptr, 1, (size_t) filelen, f) < (size_t) filelen)

{

return loaded_file;

}

loaded_file.data = ptr;

loaded_file.size = (unsigned int) filelen;

return loaded_file;

}

static void

unload_file (gnutls_datum_t data)

{

free (data.data);

}

/* Load the certificate and the private key.

*/

static void

load_keys (void)

{

int ret;

gnutls_datum_t data;

data = load_file (CERT_FILE);

if (data.data == NULL)

{

fprintf (stderr, "*** Error loading cert file.\n");

exit (1);

}

gnutls_x509_crt_init (&crt);

ret = gnutls_x509_crt_import (crt, &data, GNUTLS_X509_FMT_PEM);

Chapter 7: How To Use GnuTLS in Applications 63

if (ret < 0)

{

fprintf (stderr, "*** Error loading key file: %s\n",

gnutls_strerror (ret));

exit (1);

}

unload_file (data);

data = load_file (KEY_FILE);

if (data.data == NULL)

{

fprintf (stderr, "*** Error loading key file.\n");

exit (1);

}

gnutls_x509_privkey_init (&key);

ret = gnutls_x509_privkey_import (key, &data, GNUTLS_X509_FMT_PEM);

if (ret < 0)

{

fprintf (stderr, "*** Error loading key file: %s\n",

gnutls_strerror (ret));

exit (1);

}

unload_file (data);

}

int

main (void)

{

int ret, sd, ii;

gnutls_session_t session;

gnutls_priority_t priorities_cache;

char buffer[MAX_BUF + 1];

gnutls_certificate_credentials_t xcred;

/* Allow connections to servers that have OpenPGP keys as well.

*/

gnutls_global_init ();

load_keys ();

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

Chapter 7: How To Use GnuTLS in Applications 64

/* priorities */

gnutls_priority_init (&priorities_cache, "NORMAL", NULL);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_retrieve_function (xcred, cert_callback);

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set (session, priorities_cache);

/* put the x509 credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

*/

sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

Chapter 7: How To Use GnuTLS in Applications 65

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);

gnutls_priority_deinit (priorities_cache);

gnutls_global_deinit ();

return 0;

}

/* This callback should be associated with a session by calling

* gnutls_certificate_client_set_retrieve_function(session, cert_callback),

* before a handshake.

*/

static int

cert_callback (gnutls_session_t session,

const gnutls_datum_t * req_ca_rdn, int nreqs,

const gnutls_pk_algorithm_t * sign_algos,

int sign_algos_length, gnutls_retr2_st * st)

{

char issuer_dn[256];

Chapter 7: How To Use GnuTLS in Applications 66

int i, ret;

size_t len;

gnutls_certificate_type_t type;

/* Print the server’s trusted CAs

*/

if (nreqs > 0)

printf ("- Server’s trusted authorities:\n");

else

printf ("- Server did not send us any trusted authorities names.\n");

/* print the names (if any) */

for (i = 0; i < nreqs; i++)

{

len = sizeof (issuer_dn);

ret = gnutls_x509_rdn_get (&req_ca_rdn[i], issuer_dn, &len);

if (ret >= 0)

{

printf (" [%d]: ", i);

printf ("%s\n", issuer_dn);

}

}

/* Select a certificate and return it.

* The certificate must be of any of the "sign algorithms"

* supported by the server.

*/

type = gnutls_certificate_type_get (session);

if (type == GNUTLS_CRT_X509)

{

/* check if the certificate we are sending is signed

* with an algorithm that the server accepts */

gnutls_sign_algorithm_t cert_algo, req_algo;

int i, match = 0;

ret = gnutls_x509_crt_get_signature_algorithm (crt);

if (ret < 0)

{

/* error reading signature algorithm

*/

return -1;

}

cert_algo = ret;

i = 0;

do

Chapter 7: How To Use GnuTLS in Applications 67

{

ret = gnutls_sign_algorithm_get_requested (session, i, &req_algo);

if (ret >= 0 && cert_algo == req_algo)

{

match = 1;

break;

}

/* server has not requested anything specific */

if (i == 0 && ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)

{

match = 1;

break;

}

i++;

}

while (ret >= 0);

if (match == 0)

{

printf

("- Could not find a suitable certificate to send to server\n");

return -1;

}

st->cert_type = type;

st->ncerts = 1;

st->cert.x509 = &crt;

st->key.x509 = key;

st->key_type = GNUTLS_PRIVKEY_X509;

st->deinit_all = 0;

}

else

{

return -1;

}

return 0;

}

7.3.6 Using a PKCS #11 token with TLS

This example will demonstrate how to load keys and certificates from a PKCS #11 token,
and use it with a TLS connection.

Chapter 7: How To Use GnuTLS in Applications 68

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include <gnutls/pkcs11.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

/* A TLS client that loads the certificate and key.

*/

#define MAX_BUF 1024

#define MSG "GET / HTTP/1.0\r\n\r\n"

#define MIN(x,y) (((x)<(y))?(x):(y))

#define CAFILE "ca.pem"

#define KEY_URL "pkcs11:manufacturer=SomeManufacturer;object=Private%20Key" \

";objecttype=private;id=db:5b:3e:b5:72:33"

#define CERT_URL "pkcs11:manufacturer=SomeManufacturer;object=Certificate;" \

"objecttype=cert;id=db:5b:3e:b5:72:33"

extern int tcp_connect (void);

extern void tcp_close (int sd);

static int cert_callback (gnutls_session_t session,

const gnutls_datum_t * req_ca_rdn, int nreqs,

const gnutls_pk_algorithm_t * sign_algos,

int sign_algos_length, gnutls_retr2_st * st);

gnutls_x509_crt_t crt;

gnutls_pkcs11_privkey_t key;

/* Load the certificate and the private key.

*/

static void

Chapter 7: How To Use GnuTLS in Applications 69

load_keys (void)

{

int ret;

gnutls_x509_crt_init (&crt);

ret = gnutls_x509_crt_import_pkcs11_url (crt, CERT_URL, 0);

/* some tokens require login to read data */

if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)

ret = gnutls_x509_crt_import_pkcs11_url (crt, CERT_URL,

GNUTLS_PKCS11_OBJ_FLAG_LOGIN);

if (ret < 0)

{

fprintf (stderr, "*** Error loading key file: %s\n",

gnutls_strerror (ret));

exit (1);

}

gnutls_pkcs11_privkey_init (&key);

ret = gnutls_pkcs11_privkey_import_url (key, KEY_URL, 0);

if (ret < 0)

{

fprintf (stderr, "*** Error loading key file: %s\n",

gnutls_strerror (ret));

exit (1);

}

}

static int

pin_callback (void *user, int attempt, const char *token_url,

const char *token_label, unsigned int flags, char *pin,

size_t pin_max)

{

const char *password;

int len;

printf ("PIN required for token ’%s’ with URL ’%s’\n", token_label,

token_url);

if (flags & GNUTLS_PKCS11_PIN_FINAL_TRY)

printf ("*** This is the final try before locking!\n");

if (flags & GNUTLS_PKCS11_PIN_COUNT_LOW)

printf ("*** Only few tries left before locking!\n");

Chapter 7: How To Use GnuTLS in Applications 70

password = getpass ("Enter pin: ");

if (password == NULL || password[0] == 0)

{

fprintf (stderr, "No password given\n");

exit (1);

}

len = MIN (pin_max, strlen (password));

memcpy (pin, password, len);

pin[len] = 0;

return 0;

}

int

main (void)

{

int ret, sd, ii;

gnutls_session_t session;

gnutls_priority_t priorities_cache;

char buffer[MAX_BUF + 1];

gnutls_certificate_credentials_t xcred;

/* Allow connections to servers that have OpenPGP keys as well.

*/

gnutls_global_init ();

/* PKCS11 private key operations might require PIN.

* Register a callback.

*/

gnutls_pkcs11_set_pin_function (pin_callback, NULL);

load_keys ();

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

/* priorities */

gnutls_priority_init (&priorities_cache, "NORMAL", NULL);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_retrieve_function (xcred, cert_callback);

/* Initialize TLS session

Chapter 7: How To Use GnuTLS in Applications 71

*/

gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set (session, priorities_cache);

/* put the x509 credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

*/

sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

Chapter 7: How To Use GnuTLS in Applications 72

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);

gnutls_priority_deinit (priorities_cache);

gnutls_global_deinit ();

return 0;

}

/* This callback should be associated with a session by calling

* gnutls_certificate_client_set_retrieve_function(session, cert_callback),

* before a handshake.

*/

static int

cert_callback (gnutls_session_t session,

const gnutls_datum_t * req_ca_rdn, int nreqs,

const gnutls_pk_algorithm_t * sign_algos,

int sign_algos_length, gnutls_retr2_st * st)

{

char issuer_dn[256];

int i, ret;

size_t len;

gnutls_certificate_type_t type;

/* Print the server’s trusted CAs

*/

if (nreqs > 0)

printf ("- Server’s trusted authorities:\n");

else

printf ("- Server did not send us any trusted authorities names.\n");

/* print the names (if any) */

Chapter 7: How To Use GnuTLS in Applications 73

for (i = 0; i < nreqs; i++)

{

len = sizeof (issuer_dn);

ret = gnutls_x509_rdn_get (&req_ca_rdn[i], issuer_dn, &len);

if (ret >= 0)

{

printf (" [%d]: ", i);

printf ("%s\n", issuer_dn);

}

}

/* Select a certificate and return it.

* The certificate must be of any of the "sign algorithms"

* supported by the server.

*/

type = gnutls_certificate_type_get (session);

if (type == GNUTLS_CRT_X509)

{

/* check if the certificate we are sending is signed

* with an algorithm that the server accepts */

gnutls_sign_algorithm_t cert_algo, req_algo;

int i, match = 0;

ret = gnutls_x509_crt_get_signature_algorithm (crt);

if (ret < 0)

{

/* error reading signature algorithm

*/

return -1;

}

cert_algo = ret;

i = 0;

do

{

ret = gnutls_sign_algorithm_get_requested (session, i, &req_algo);

if (ret >= 0 && cert_algo == req_algo)

{

match = 1;

break;

}

/* server has not requested anything specific */

if (i == 0 && ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)

{

match = 1;

Chapter 7: How To Use GnuTLS in Applications 74

break;

}

i++;

}

while (ret >= 0);

if (match == 0)

{

printf

("- Could not find a suitable certificate to send to server\n");

return -1;

}

st->cert_type = type;

st->ncerts = 1;

st->cert.x509 = &crt;

st->key.pkcs11 = key;

st->key_type = GNUTLS_PRIVKEY_PKCS11;

st->deinit_all = 0;

}

else

{

return -1;

}

return 0;

}

7.3.7 Client with Resume Capability Example

This is a modification of the simple client example. Here we demonstrate the use of session
resumption. The client tries to connect once using TLS, close the connection and then try
to establish a new connection using the previously negotiated data.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

Chapter 7: How To Use GnuTLS in Applications 75

/* Those functions are defined in other examples.

*/

extern void check_alert (gnutls_session_t session, int ret);

extern int tcp_connect (void);

extern void tcp_close (int sd);

#define MAX_BUF 1024

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

int

main (void)

{

int ret;

int sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

gnutls_certificate_credentials_t xcred;

/* variables used in session resuming

*/

int t;

char *session_data = NULL;

size_t session_data_size = 0;

gnutls_global_init ();

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

for (t = 0; t < 2; t++)

{ /* connect 2 times to the server */

sd = tcp_connect ();

gnutls_init (&session, GNUTLS_CLIENT);

gnutls_priority_set_direct (session, "PERFORMANCE:!ARCFOUR-128", NULL);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

if (t > 0)

{

/* if this is not the first time we connect */

gnutls_session_set_data (session, session_data, session_data_size);

Chapter 7: How To Use GnuTLS in Applications 76

free (session_data);

}

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

if (t == 0)

{ /* the first time we connect */

/* get the session data size */

gnutls_session_get_data (session, NULL, &session_data_size);

session_data = malloc (session_data_size);

/* put session data to the session variable */

gnutls_session_get_data (session, session_data, &session_data_size);

}

else

{ /* the second time we connect */

/* check if we actually resumed the previous session */

if (gnutls_session_is_resumed (session) != 0)

{

printf ("- Previous session was resumed\n");

}

else

{

fprintf (stderr, "*** Previous session was NOT resumed\n");

}

}

/* This function was defined in a previous example

*/

/* print_info(session); */

Chapter 7: How To Use GnuTLS in Applications 77

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

} /* for() */

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

return 0;

}

7.3.8 Simple Client Example with SRP Authentication

The following client is a very simple SRP TLS client which connects to a server and au-
thenticates using a username and a password. The server may authenticate itself using a
certificate, and in that case it has to be verified.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

Chapter 7: How To Use GnuTLS in Applications 78

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/extra.h>

/* Those functions are defined in other examples.

*/

extern void check_alert (gnutls_session_t session, int ret);

extern int tcp_connect (void);

extern void tcp_close (int sd);

#define MAX_BUF 1024

#define USERNAME "user"

#define PASSWORD "pass"

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

int

main (void)

{

int ret;

int sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

gnutls_srp_client_credentials_t srp_cred;

gnutls_certificate_credentials_t cert_cred;

gnutls_global_init ();

/* now enable the gnutls-extra library which contains the

* SRP stuff.

*/

gnutls_global_init_extra ();

gnutls_srp_allocate_client_credentials (&srp_cred);

gnutls_certificate_allocate_credentials (&cert_cred);

gnutls_certificate_set_x509_trust_file (cert_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_srp_set_client_credentials (srp_cred, USERNAME, PASSWORD);

/* connects to server

*/

Chapter 7: How To Use GnuTLS in Applications 79

sd = tcp_connect ();

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

/* Set the priorities.

*/

gnutls_priority_set_direct (session, "NORMAL:+SRP:+SRP-RSA:+SRP-DSS", NULL);

/* put the SRP credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_SRP, srp_cred);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cert_cred);

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (gnutls_error_is_fatal (ret) == 1 || ret == 0)

{

if (ret == 0)

{

printf ("- Peer has closed the GnuTLS connection\n");

goto end;

}

else

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

Chapter 7: How To Use GnuTLS in Applications 80

}

}

else

check_alert (session, ret);

if (ret > 0)

{

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

}

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_srp_free_client_credentials (srp_cred);

gnutls_certificate_free_credentials (cert_cred);

gnutls_global_deinit ();

return 0;

}

7.3.9 Simple Client Example using the C++ API

The following client is a simple example of a client client utilizing the GnuTLS C++ API.

#include <iostream>

#include <stdexcept>

#include <gnutls/gnutls.h>

#include <gnutls/gnutlsxx.h>

#include <cstring> /* for strlen */

/* A very basic TLS client, with anonymous authentication.

* written by Eduardo Villanueva Che.

*/

#define MAX_BUF 1024

#define SA struct sockaddr

#define CAFILE "ca.pem"

Chapter 7: How To Use GnuTLS in Applications 81

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern "C"

{

int tcp_connect(void);

void tcp_close(int sd);

}

int main(void)

{

int sd = -1;

gnutls_global_init();

try

{

/* Allow connections to servers that have OpenPGP keys as well.

*/

gnutls::client_session session;

/* X509 stuff */

gnutls::certificate_credentials credentials;

/* sets the trusted cas file

*/

credentials.set_x509_trust_file(CAFILE, GNUTLS_X509_FMT_PEM);

/* put the x509 credentials to the current session

*/

session.set_credentials(credentials);

/* Use default priorities */

session.set_priority ("NORMAL", NULL);

/* connect to the peer

*/

sd = tcp_connect();

session.set_transport_ptr((gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

int ret = session.handshake();

if (ret < 0)

{

// gnutls_perror(ret);

throw std::runtime_error("Handshake failed");

Chapter 7: How To Use GnuTLS in Applications 82

}

else

{

std::cout << "- Handshake was completed" << std::endl;

}

session.send(MSG, strlen(MSG));

char buffer[MAX_BUF + 1];

ret = session.recv(buffer, MAX_BUF);

if (ret == 0)

{

throw std::runtime_error("Peer has closed the TLS connection");

}

else if (ret < 0)

{

throw std::runtime_error(gnutls_strerror(ret));

}

std::cout << "- Received " << ret << " bytes:" << std::endl;

std::cout.write(buffer, ret);

std::cout << std::endl;

session.bye(GNUTLS_SHUT_RDWR);

}

catch (std::exception &ex)

{

std::cerr << "Exception caught: " << ex.what() << std::endl;

}

if (sd != -1)

tcp_close(sd);

gnutls_global_deinit();

return 0;

}

7.3.10 Helper Function for TCP Connections

This helper function abstracts away TCP connection handling from the other examples. It
is required to build some examples.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

Chapter 7: How To Use GnuTLS in Applications 83

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <unistd.h>

#define SA struct sockaddr

/* tcp.c */

int tcp_connect (void);

void tcp_close (int sd);

/* Connects to the peer and returns a socket

* descriptor.

*/

extern int

tcp_connect (void)

{

const char *PORT = "5556";

const char *SERVER = "127.0.0.1";

int err, sd;

struct sockaddr_in sa;

/* connects to server

*/

sd = socket (AF_INET, SOCK_STREAM, 0);

memset (&sa, ’\0’, sizeof (sa));

sa.sin_family = AF_INET;

sa.sin_port = htons (atoi (PORT));

inet_pton (AF_INET, SERVER, &sa.sin_addr);

err = connect (sd, (SA *) & sa, sizeof (sa));

if (err < 0)

{

fprintf (stderr, "Connect error\n");

exit (1);

}

return sd;

}

/* closes the given socket descriptor.

*/

Chapter 7: How To Use GnuTLS in Applications 84

extern void

tcp_close (int sd)

{

shutdown (sd, SHUT_RDWR); /* no more receptions */

close (sd);

}

7.4 Server Examples

This section contains examples of TLS and SSL servers, using GnuTLS.

7.4.1 Echo Server with X.509 Authentication

This example is a very simple echo server which supports X.509 authentication, using the
RSA ciphersuites.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#define KEYFILE "key.pem"

#define CERTFILE "cert.pem"

#define CAFILE "ca.pem"

#define CRLFILE "crl.pem"

/* This is a sample TLS 1.0 echo server, using X.509 authentication.

*/

#define SA struct sockaddr

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

#define DH_BITS 1024

/* These are global */

Chapter 7: How To Use GnuTLS in Applications 85

gnutls_certificate_credentials_t x509_cred;

gnutls_priority_t priority_cache;

static gnutls_session_t

initialize_tls_session (void)

{

gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

gnutls_priority_set (session, priority_cache);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, x509_cred);

/* request client certificate if any.

*/

gnutls_certificate_server_set_request (session, GNUTLS_CERT_REQUEST);

/* Set maximum compatibility mode. This is only suggested on public webservers

* that need to trade security for compatibility

*/

gnutls_session_enable_compatibility_mode (session);

return session;

}

static gnutls_dh_params_t dh_params;

static int

generate_dh_params (void)

{

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. When short bit length is used, it might

* be wise to regenerate parameters.

*

* Check the ex-serv-export.c example for using static

* parameters.

*/

gnutls_dh_params_init (&dh_params);

gnutls_dh_params_generate2 (dh_params, DH_BITS);

return 0;

}

int

main (void)

Chapter 7: How To Use GnuTLS in Applications 86

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

int client_len;

char topbuf[512];

gnutls_session_t session;

char buffer[MAX_BUF + 1];

int optval = 1;

/* this must be called once in the program

*/

gnutls_global_init ();

gnutls_certificate_allocate_credentials (&x509_cred);

gnutls_certificate_set_x509_trust_file (x509_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_crl_file (x509_cred, CRLFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file (x509_cred, CERTFILE, KEYFILE,

GNUTLS_X509_FMT_PEM);

generate_dh_params ();

gnutls_priority_init (&priority_cache, "NORMAL", NULL);

gnutls_certificate_set_dh_params (x509_cred, dh_params);

/* Socket operations

*/

listen_sd = socket (AF_INET, SOCK_STREAM, 0);

SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));

SOCKET_ERR (err, "bind");

Chapter 7: How To Use GnuTLS in Applications 87

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

printf ("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof (sa_cli);

for (;;)

{

session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",

inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

ret = gnutls_handshake (session);

if (ret < 0)

{

close (sd);

gnutls_deinit (session);

fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));

continue;

}

printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */

/* print_info(session); */

for (;;)

{

memset (buffer, 0, MAX_BUF + 1);

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("\n- Peer has closed the GnuTLS connection\n");

break;

}

else if (ret < 0)

{

fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);

break;

}

Chapter 7: How To Use GnuTLS in Applications 88

else if (ret > 0)

{

/* echo data back to the client

*/

gnutls_record_send (session, buffer, strlen (buffer));

}

}

printf ("\n");

/* do not wait for the peer to close the connection.

*/

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

gnutls_deinit (session);

}

close (listen_sd);

gnutls_certificate_free_credentials (x509_cred);

gnutls_priority_deinit (priority_cache);

gnutls_global_deinit ();

return 0;

}

7.4.2 Echo Server with OpenPGP Authentication

The following example is an echo server which supports OpenPGP key authentication. You
can easily combine this functionality —that is have a server that supports both X.509 and
OpenPGP certificates— but we separated them to keep these examples as simple as possible.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

Chapter 7: How To Use GnuTLS in Applications 89

#include <gnutls/gnutls.h>

#include <gnutls/openpgp.h>

#define KEYFILE "secret.asc"

#define CERTFILE "public.asc"

#define RINGFILE "ring.gpg"

/* This is a sample TLS 1.0-OpenPGP echo server.

*/

#define SA struct sockaddr

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

#define DH_BITS 1024

/* These are global */

gnutls_certificate_credentials_t cred;

gnutls_dh_params_t dh_params;

static int

generate_dh_params (void)

{

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. These should be discarded and regenerated

* once a day, once a week or once a month. Depending on the

* security requirements.

*/

gnutls_dh_params_init (&dh_params);

gnutls_dh_params_generate2 (dh_params, DH_BITS);

return 0;

}

static gnutls_session_t

initialize_tls_session (void)

{

gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

gnutls_priority_set_direct (session, "NORMAL", NULL);

/* request client certificate if any.

*/

Chapter 7: How To Use GnuTLS in Applications 90

gnutls_certificate_server_set_request (session, GNUTLS_CERT_REQUEST);

gnutls_dh_set_prime_bits (session, DH_BITS);

return session;

}

int

main (void)

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

int client_len;

char topbuf[512];

gnutls_session_t session;

char buffer[MAX_BUF + 1];

int optval = 1;

char name[256];

strcpy (name, "Echo Server");

/* this must be called once in the program

*/

gnutls_global_init ();

gnutls_certificate_allocate_credentials (&cred);

gnutls_certificate_set_openpgp_keyring_file (cred, RINGFILE,

GNUTLS_OPENPGP_FMT_BASE64);

gnutls_certificate_set_openpgp_key_file (cred, CERTFILE, KEYFILE,

GNUTLS_OPENPGP_FMT_BASE64);

generate_dh_params ();

gnutls_certificate_set_dh_params (cred, dh_params);

/* Socket operations

*/

listen_sd = socket (AF_INET, SOCK_STREAM, 0);

SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

Chapter 7: How To Use GnuTLS in Applications 91

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));

SOCKET_ERR (err, "bind");

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

printf ("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof (sa_cli);

for (;;)

{

session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",

inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

ret = gnutls_handshake (session);

if (ret < 0)

{

close (sd);

gnutls_deinit (session);

fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));

continue;

}

printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */

/* print_info(session); */

for (;;)

{

memset (buffer, 0, MAX_BUF + 1);

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("\n- Peer has closed the GnuTLS connection\n");

break;

}

Chapter 7: How To Use GnuTLS in Applications 92

else if (ret < 0)

{

fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);

break;

}

else if (ret > 0)

{

/* echo data back to the client

*/

gnutls_record_send (session, buffer, strlen (buffer));

}

}

printf ("\n");

/* do not wait for the peer to close the connection.

*/

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

gnutls_deinit (session);

}

close (listen_sd);

gnutls_certificate_free_credentials (cred);

gnutls_global_deinit ();

return 0;

}

7.4.3 Echo Server with SRP Authentication

This is a server which supports SRP authentication. It is also possible to combine this
functionality with a certificate server. Here it is separate for simplicity.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

Chapter 7: How To Use GnuTLS in Applications 93

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/extra.h>

#define SRP_PASSWD "tpasswd"

#define SRP_PASSWD_CONF "tpasswd.conf"

#define KEYFILE "key.pem"

#define CERTFILE "cert.pem"

#define CAFILE "ca.pem"

/* This is a sample TLS-SRP echo server.

*/

#define SA struct sockaddr

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

/* These are global */

gnutls_srp_server_credentials_t srp_cred;

gnutls_certificate_credentials_t cert_cred;

static gnutls_session_t

initialize_tls_session (void)

{

gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

gnutls_priority_set_direct (session, "NORMAL:+SRP:+SRP-DSS:+SRP-RSA", NULL);

gnutls_credentials_set (session, GNUTLS_CRD_SRP, srp_cred);

/* for the certificate authenticated ciphersuites.

*/

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cert_cred);

/* request client certificate if any.

*/

gnutls_certificate_server_set_request (session, GNUTLS_CERT_IGNORE);

return session;

}

Chapter 7: How To Use GnuTLS in Applications 94

int

main (void)

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

int client_len;

char topbuf[512];

gnutls_session_t session;

char buffer[MAX_BUF + 1];

int optval = 1;

char name[256];

strcpy (name, "Echo Server");

/* these must be called once in the program

*/

gnutls_global_init ();

gnutls_global_init_extra (); /* for SRP */

/* SRP_PASSWD a password file (created with the included srptool utility)

*/

gnutls_srp_allocate_server_credentials (&srp_cred);

gnutls_srp_set_server_credentials_file (srp_cred, SRP_PASSWD,

SRP_PASSWD_CONF);

gnutls_certificate_allocate_credentials (&cert_cred);

gnutls_certificate_set_x509_trust_file (cert_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file (cert_cred, CERTFILE, KEYFILE,

GNUTLS_X509_FMT_PEM);

/* TCP socket operations

*/

listen_sd = socket (AF_INET, SOCK_STREAM, 0);

SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));

Chapter 7: How To Use GnuTLS in Applications 95

SOCKET_ERR (err, "bind");

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

printf ("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof (sa_cli);

for (;;)

{

session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",

inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

ret = gnutls_handshake (session);

if (ret < 0)

{

close (sd);

gnutls_deinit (session);

fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));

continue;

}

printf ("- Handshake was completed\n");

/* print_info(session); */

for (;;)

{

memset (buffer, 0, MAX_BUF + 1);

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("\n- Peer has closed the GnuTLS connection\n");

break;

}

else if (ret < 0)

{

fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);

break;

}

Chapter 7: How To Use GnuTLS in Applications 96

else if (ret > 0)

{

/* echo data back to the client

*/

gnutls_record_send (session, buffer, strlen (buffer));

}

}

printf ("\n");

/* do not wait for the peer to close the connection. */

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

gnutls_deinit (session);

}

close (listen_sd);

gnutls_srp_free_server_credentials (srp_cred);

gnutls_certificate_free_credentials (cert_cred);

gnutls_global_deinit ();

return 0;

}

7.4.4 Echo Server with Anonymous Authentication

This example server support anonymous authentication, and could be used to serve the
example client for anonymous authentication.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

Chapter 7: How To Use GnuTLS in Applications 97

/* This is a sample TLS 1.0 echo server, for anonymous authentication only.

*/

#define SA struct sockaddr

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

#define DH_BITS 1024

/* These are global */

gnutls_anon_server_credentials_t anoncred;

static gnutls_session_t

initialize_tls_session (void)

{

gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

gnutls_priority_set_direct (session, "NORMAL:+ANON-DH", NULL);

gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);

gnutls_dh_set_prime_bits (session, DH_BITS);

return session;

}

static gnutls_dh_params_t dh_params;

static int

generate_dh_params (void)

{

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. These should be discarded and regenerated

* once a day, once a week or once a month. Depending on the

* security requirements.

*/

gnutls_dh_params_init (&dh_params);

gnutls_dh_params_generate2 (dh_params, DH_BITS);

return 0;

}

int

Chapter 7: How To Use GnuTLS in Applications 98

main (void)

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

int client_len;

char topbuf[512];

gnutls_session_t session;

char buffer[MAX_BUF + 1];

int optval = 1;

/* this must be called once in the program

*/

gnutls_global_init ();

gnutls_anon_allocate_server_credentials (&anoncred);

generate_dh_params ();

gnutls_anon_set_server_dh_params (anoncred, dh_params);

/* Socket operations

*/

listen_sd = socket (AF_INET, SOCK_STREAM, 0);

SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));

SOCKET_ERR (err, "bind");

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

printf ("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof (sa_cli);

for (;;)

{

session = initialize_tls_session ();

Chapter 7: How To Use GnuTLS in Applications 99

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",

inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

ret = gnutls_handshake (session);

if (ret < 0)

{

close (sd);

gnutls_deinit (session);

fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));

continue;

}

printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */

/* print_info(session); */

for (;;)

{

memset (buffer, 0, MAX_BUF + 1);

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("\n- Peer has closed the GnuTLS connection\n");

break;

}

else if (ret < 0)

{

fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);

break;

}

else if (ret > 0)

{

/* echo data back to the client

*/

gnutls_record_send (session, buffer, strlen (buffer));

}

}

printf ("\n");

/* do not wait for the peer to close the connection.

*/

Chapter 7: How To Use GnuTLS in Applications 100

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

gnutls_deinit (session);

}

close (listen_sd);

gnutls_anon_free_server_credentials (anoncred);

gnutls_global_deinit ();

return 0;

}

7.5 Miscellaneous Examples

7.5.1 Checking for an Alert

This is a function that checks if an alert has been received in the current session.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include "examples.h"

/* This function will check whether the given return code from

* a gnutls function (recv/send), is an alert, and will print

* that alert.

*/

void

check_alert (gnutls_session_t session, int ret)

{

int last_alert;

if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED

|| ret == GNUTLS_E_FATAL_ALERT_RECEIVED)

{

last_alert = gnutls_alert_get (session);

Chapter 7: How To Use GnuTLS in Applications 101

/* The check for renegotiation is only useful if we are

* a server, and we had requested a rehandshake.

*/

if (last_alert == GNUTLS_A_NO_RENEGOTIATION &&

ret == GNUTLS_E_WARNING_ALERT_RECEIVED)

printf ("* Received NO_RENEGOTIATION alert. "

"Client Does not support renegotiation.\n");

else

printf ("* Received alert ’%d’: %s.\n", last_alert,

gnutls_alert_get_name (last_alert));

}

}

7.5.2 X.509 Certificate Parsing Example

To demonstrate the X.509 parsing capabilities an example program is listed below. That
program reads the peer’s certificate, and prints information about it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

static const char *

bin2hex (const void *bin, size_t bin_size)

{

static char printable[110];

const unsigned char *_bin = bin;

char *print;

size_t i;

if (bin_size > 50)

bin_size = 50;

print = printable;

for (i = 0; i < bin_size; i++)

{

sprintf (print, "%.2x ", _bin[i]);

print += 2;

}

Chapter 7: How To Use GnuTLS in Applications 102

return printable;

}

/* This function will print information about this session’s peer

* certificate.

*/

void

print_x509_certificate_info (gnutls_session_t session)

{

char serial[40];

char dn[256];

size_t size;

unsigned int algo, bits;

time_t expiration_time, activation_time;

const gnutls_datum_t *cert_list;

unsigned int cert_list_size = 0;

gnutls_x509_crt_t cert;

gnutls_datum_t cinfo;

/* This function only works for X.509 certificates.

*/

if (gnutls_certificate_type_get (session) != GNUTLS_CRT_X509)

return;

cert_list = gnutls_certificate_get_peers (session, &cert_list_size);

printf ("Peer provided %d certificates.\n", cert_list_size);

if (cert_list_size > 0)

{

int ret;

/* we only print information about the first certificate.

*/

gnutls_x509_crt_init (&cert);

gnutls_x509_crt_import (cert, &cert_list[0], GNUTLS_X509_FMT_DER);

printf ("Certificate info:\n");

/* This is the preferred way of printing short information about

a certificate. */

ret = gnutls_x509_crt_print (cert, GNUTLS_CRT_PRINT_ONELINE, &cinfo);

if (ret == 0)

{

Chapter 7: How To Use GnuTLS in Applications 103

printf ("\t%s\n", cinfo.data);

gnutls_free (cinfo.data);

}

/* If you want to extract fields manually for some other reason,

below are popular example calls. */

expiration_time = gnutls_x509_crt_get_expiration_time (cert);

activation_time = gnutls_x509_crt_get_activation_time (cert);

printf ("\tCertificate is valid since: %s", ctime (&activation_time));

printf ("\tCertificate expires: %s", ctime (&expiration_time));

/* Print the serial number of the certificate.

*/

size = sizeof (serial);

gnutls_x509_crt_get_serial (cert, serial, &size);

printf ("\tCertificate serial number: %s\n", bin2hex (serial, size));

/* Extract some of the public key algorithm’s parameters

*/

algo = gnutls_x509_crt_get_pk_algorithm (cert, &bits);

printf ("Certificate public key: %s",

gnutls_pk_algorithm_get_name (algo));

/* Print the version of the X.509

* certificate.

*/

printf ("\tCertificate version: #%d\n",

gnutls_x509_crt_get_version (cert));

size = sizeof (dn);

gnutls_x509_crt_get_dn (cert, dn, &size);

printf ("\tDN: %s\n", dn);

size = sizeof (dn);

gnutls_x509_crt_get_issuer_dn (cert, dn, &size);

printf ("\tIssuer’s DN: %s\n", dn);

gnutls_x509_crt_deinit (cert);

}

}

Chapter 7: How To Use GnuTLS in Applications 104

7.5.3 Certificate Request Generation

The following example is about generating a certificate request, and a private key. A cer-
tificate request can be later be processed by a CA, which should return a signed certificate.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include <gnutls/abstract.h>

#include <time.h>

/* This example will generate a private key and a certificate

* request.

*/

int

main (void)

{

gnutls_x509_crq_t crq;

gnutls_x509_privkey_t key;

gnutls_privkey_t pkey; /* object used for signing */

unsigned char buffer[10 * 1024];

size_t buffer_size = sizeof (buffer);

unsigned int bits;

gnutls_global_init ();

/* Initialize an empty certificate request, and

* an empty private key.

*/

gnutls_x509_crq_init (&crq);

gnutls_x509_privkey_init (&key);

gnutls_privkey_init (&pkey);

/* Generate an RSA key of moderate security.

*/

bits = gnutls_sec_param_to_pk_bits (GNUTLS_PK_RSA, GNUTLS_SEC_PARAM_NORMAL);

gnutls_x509_privkey_generate (key, GNUTLS_PK_RSA, bits, 0);

Chapter 7: How To Use GnuTLS in Applications 105

/* Add stuff to the distinguished name

*/

gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COUNTRY_NAME,

0, "GR", 2);

gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COMMON_NAME,

0, "Nikos", strlen ("Nikos"));

/* Set the request version.

*/

gnutls_x509_crq_set_version (crq, 1);

/* Set a challenge password.

*/

gnutls_x509_crq_set_challenge_password (crq, "something to remember here");

/* Associate the request with the private key

*/

gnutls_x509_crq_set_key (crq, key);

/* Self sign the certificate request.

*/

gnutls_privkey_import_x509(pkey, key, 0);

gnutls_x509_crq_privkey_sign (crq, pkey, GNUTLS_DIG_SHA1, 0);

/* Export the PEM encoded certificate request, and

* display it.

*/

gnutls_x509_crq_export (crq, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("Certificate Request: \n%s", buffer);

/* Export the PEM encoded private key, and

* display it.

*/

buffer_size = sizeof (buffer);

gnutls_x509_privkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("\n\nPrivate key: \n%s", buffer);

gnutls_x509_crq_deinit (crq);

gnutls_x509_privkey_deinit (key);

return 0;

}

Chapter 7: How To Use GnuTLS in Applications 106

7.5.4 PKCS #12 Structure Generation

The following example is about generating a PKCS #12 structure.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/pkcs12.h>

#include "examples.h"

#define OUTFILE "out.p12"

/* This function will write a pkcs12 structure into a file.

* cert: is a DER encoded certificate

* pkcs8_key: is a PKCS #8 encrypted key (note that this must be

* encrypted using a PKCS #12 cipher, or some browsers will crash)

* password: is the password used to encrypt the PKCS #12 packet.

*/

int

write_pkcs12 (const gnutls_datum_t * cert,

const gnutls_datum_t * pkcs8_key, const char *password)

{

gnutls_pkcs12_t pkcs12;

int ret, bag_index;

gnutls_pkcs12_bag_t bag, key_bag;

char pkcs12_struct[10 * 1024];

size_t pkcs12_struct_size;

FILE *fd;

/* A good idea might be to use gnutls_x509_privkey_get_key_id()

* to obtain a unique ID.

*/

gnutls_datum_t key_id = { (char *) "\x00\x00\x07", 3 };

gnutls_global_init ();

/* Firstly we create two helper bags, which hold the certificate,

* and the (encrypted) key.

*/

gnutls_pkcs12_bag_init (&bag);

Chapter 7: How To Use GnuTLS in Applications 107

gnutls_pkcs12_bag_init (&key_bag);

ret = gnutls_pkcs12_bag_set_data (bag, GNUTLS_BAG_CERTIFICATE, cert);

if (ret < 0)

{

fprintf (stderr, "ret: %s\n", gnutls_strerror (ret));

return 1;

}

/* ret now holds the bag’s index.

*/

bag_index = ret;

/* Associate a friendly name with the given certificate. Used

* by browsers.

*/

gnutls_pkcs12_bag_set_friendly_name (bag, bag_index, "My name");

/* Associate the certificate with the key using a unique key

* ID.

*/

gnutls_pkcs12_bag_set_key_id (bag, bag_index, &key_id);

/* use weak encryption for the certificate.

*/

gnutls_pkcs12_bag_encrypt (bag, password, GNUTLS_PKCS_USE_PKCS12_RC2_40);

/* Now the key.

*/

ret = gnutls_pkcs12_bag_set_data (key_bag,

GNUTLS_BAG_PKCS8_ENCRYPTED_KEY,

pkcs8_key);

if (ret < 0)

{

fprintf (stderr, "ret: %s\n", gnutls_strerror (ret));

return 1;

}

/* Note that since the PKCS #8 key is already encrypted we don’t

* bother encrypting that bag.

*/

bag_index = ret;

gnutls_pkcs12_bag_set_friendly_name (key_bag, bag_index, "My name");

gnutls_pkcs12_bag_set_key_id (key_bag, bag_index, &key_id);

Chapter 7: How To Use GnuTLS in Applications 108

/* The bags were filled. Now create the PKCS #12 structure.

*/

gnutls_pkcs12_init (&pkcs12);

/* Insert the two bags in the PKCS #12 structure.

*/

gnutls_pkcs12_set_bag (pkcs12, bag);

gnutls_pkcs12_set_bag (pkcs12, key_bag);

/* Generate a message authentication code for the PKCS #12

* structure.

*/

gnutls_pkcs12_generate_mac (pkcs12, password);

pkcs12_struct_size = sizeof (pkcs12_struct);

ret =

gnutls_pkcs12_export (pkcs12, GNUTLS_X509_FMT_DER, pkcs12_struct,

&pkcs12_struct_size);

if (ret < 0)

{

fprintf (stderr, "ret: %s\n", gnutls_strerror (ret));

return 1;

}

fd = fopen (OUTFILE, "w");

if (fd == NULL)

{

fprintf (stderr, "cannot open file\n");

return 1;

}

fwrite (pkcs12_struct, 1, pkcs12_struct_size, fd);

fclose (fd);

gnutls_pkcs12_bag_deinit (bag);

gnutls_pkcs12_bag_deinit (key_bag);

gnutls_pkcs12_deinit (pkcs12);

return 0;

}

Chapter 7: How To Use GnuTLS in Applications 109

7.6 Compatibility with the OpenSSL Library

To ease GnuTLS’ integration with existing applications, a compatibility layer with the widely
used OpenSSL library is included in the gnutls-openssl library. This compatibility layer
is not complete and it is not intended to completely reimplement the OpenSSL API with
GnuTLS. It only provides source-level compatibility. There is currently no attempt to make
it binary-compatible with OpenSSL.

The prototypes for the compatibility functions are in the ‘gnutls/openssl.h’ header file.

Current limitations imposed by the compatibility layer include:

• Error handling is not thread safe.

7.7 Keying Material Exporters

The TLS PRF can be used by other protocols to derive data. The API to use is [gnutls prf],
page 178. The function needs to be provided with the label in the parameter label, and
the extra data to mix in the extra parameter. Depending on whether you want to mix in
the client or server random data first, you can set the server_random_first parameter.

For example, after establishing a TLS session using [gnutls handshake], page 161, you can
invoke the TLS PRF with this call:

#define MYLABEL "EXPORTER-FOO"

#define MYCONTEXT "some context data"

char out[32];

rc = gnutls_prf (session, strlen (MYLABEL), MYLABEL, 0,

strlen (MYCONTEXT), MYCONTEXT, 32, out);

If you don’t want to mix in the client/server random, there is a more low-level TLS PRF
interface called [gnutls prf raw], page 178.

7.8 Channel Bindings

In user authentication protocols (e.g., EAP or SASL mechanisms) it is useful to have a
unique string that identifies the secure channel that is used, to bind together the user
authentication with the secure channel. This can protect against man-in-the-middle attacks
in some situations. The unique strings is a “channel bindings”. For background and more
discussion see [RFC5056] (see [Bibliography], page 376).

You can extract a channel bindings using the [gnutls session channel binding], page 201
function. Currently only the GNUTLS_CB_TLS_UNIQUE type is supported, which corresponds
to the tls-unique channel bindings for TLS defined in [RFC5929] (see [Bibliography],
page 376).

The following example describes how to print the channel binding data. Note that it must
be run after a successful TLS handshake.

{

gnutls_datum cb;

int rc;

rc = gnutls_session_channel_binding (session,

GNUTLS_CB_TLS_UNIQUE,

&cb);

if (rc)

fprintf (stderr, "Channel binding error: %s\n",

Chapter 7: How To Use GnuTLS in Applications 110

gnutls_strerror (rc));

else

{

size_t i;

printf ("- Channel binding ’tls-unique’: ");

for (i = 0; i < cb.size; i++)

printf ("%02x", cb.data[i]);

printf ("\n");

}

}

Chapter 8: Included Programs 111

8 Included Programs

Included with GnuTLS are also a few command line tools that let you use the library
for common tasks without writing an application. The applications are discussed in this
chapter.

8.1 Invoking certtool

This is a program to generate X.509 certificates, certificate requests, CRLs and private keys.

Certtool help

Usage: certtool [options]

-s, --generate-self-signed

Generate a self-signed certificate.

-c, --generate-certificate

Generate a signed certificate.

--generate-proxy Generate a proxy certificate.

--generate-crl Generate a CRL.

-u, --update-certificate

Update a signed certificate.

-p, --generate-privkey Generate a private key.

-q, --generate-request Generate a PKCS #10 certificate

request.

-e, --verify-chain Verify a PEM encoded certificate chain.

The last certificate in the chain must

be a self signed one.

--verify-crl Verify a CRL.

--generate-dh-params Generate PKCS #3 encoded Diffie-Hellman

parameters.

--get-dh-params Get the included PKCS #3 encoded Diffie

Hellman parameters.

--load-privkey FILE Private key file to use.

--load-request FILE Certificate request file to use.

--load-certificate FILE

Certificate file to use.

--load-ca-privkey FILE Certificate authority’s private key

file to use.

--load-ca-certificate FILE

Certificate authority’s certificate

file to use.

--password PASSWORD Password to use.

-i, --certificate-info Print information on a certificate.

-l, --crl-info Print information on a CRL.

--p12-info Print information on a PKCS #12

structure.

--p7-info Print information on a PKCS #7

structure.

--smime-to-p7 Convert S/MIME to PKCS #7 structure.

Chapter 8: Included Programs 112

-k, --key-info Print information on a private key.

--fix-key Regenerate the parameters in a private

key.

--to-p12 Generate a PKCS #12 structure.

-8, --pkcs8 Use PKCS #8 format for private keys.

--dsa Use DSA keys.

--hash STR Hash algorithm to use for signing

(MD5,SHA1,RMD160).

--export-ciphers Use weak encryption algorithms.

--inder Use DER format for input certificates

and private keys.

--outder Use DER format for output certificates

and private keys.

--bits BITS specify the number of bits for key

generation.

--outfile FILE Output file.

--infile FILE Input file.

--template FILE Template file to use for non

interactive operation.

-d, --debug LEVEL specify the debug level. Default is 1.

-h, --help shows this help text

-v, --version shows the program’s version

The program can be used interactively or non interactively by specifying the --template

command line option. See below for an example of a template file.

How to use certtool interactively:

• To generate parameters for Diffie-Hellman key exchange, use the command:

$ certtool --generate-dh-params --outfile dh.pem

• To generate parameters for the RSA-EXPORT key exchange, use the command:

$ certtool --generate-privkey --bits 512 --outfile rsa.pem

• To create a self signed certificate, use the command:

$ certtool --generate-privkey --outfile ca-key.pem

$ certtool --generate-self-signed --load-privkey ca-key.pem \

--outfile ca-cert.pem

Note that a self-signed certificate usually belongs to a certificate authority, that signs
other certificates.

• To create a private key (RSA by default), run:

$ certtool --generate-privkey --outfile key.pem

To create a DSA private key, run:

$ certtool --dsa --generate-privkey --outfile key-dsa.pem

• To generate a certificate using the private key, use the command:

$ certtool --generate-certificate --load-privkey key.pem \

--outfile cert.pem --load-ca-certificate ca-cert.pem \

--load-ca-privkey ca-key.pem

Chapter 8: Included Programs 113

• To create a certificate request (needed when the certificate is issued by another party),
run:

$ certtool --generate-request --load-privkey key.pem \

--outfile request.pem

• To generate a certificate using the previous request, use the command:

$ certtool --generate-certificate --load-request request.pem \

--outfile cert.pem \

--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

• To view the certificate information, use:

$ certtool --certificate-info --infile cert.pem

• To generate a PKCS #12 structure using the previous key and certificate, use the
command:

$ certtool --load-certificate cert.pem --load-privkey key.pem \

--to-p12 --outder --outfile key.p12

Some tools (reportedly web browsers) have problems with that file because it does not
contain the CA certificate for the certificate. To work around that problem in the tool,
you can use the ‘--load-ca-certificate’ parameter as follows:

$ certtool --load-ca-certificate ca.pem \

--load-certificate cert.pem --load-privkey key.pem \

--to-p12 --outder --outfile key.p12

• Proxy certificate can be used to delegate your credential to a temporary, typically short-
lived, certificate. To create one from the previously created certificate, first create a
temporary key and then generate a proxy certificate for it, using the commands:

$ certtool --generate-privkey > proxy-key.pem

$ certtool --generate-proxy --load-ca-privkey key.pem \

--load-privkey proxy-key.pem --load-certificate cert.pem \

--outfile proxy-cert.pem

• To create an empty Certificate Revocation List (CRL) do:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem --load-ca-certificate x509-ca.pem

To create a CRL that contains some revoked certificates, place the certificates in a file
and use --load-certificate as follows:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem --load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem

• To verify a Certificate Revocation List (CRL) do:

$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem

Certtool’s template file format:

• Firstly create a file named ’cert.cfg’ that contains the information about the certificate.
An example file is listed below.

• Then execute:

$ certtool --generate-certificate cert.pem --load-privkey key.pem \

--template cert.cfg \

--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

An example certtool template file:

Chapter 8: Included Programs 114

X.509 Certificate options

#

DN options

The organization of the subject.

organization = "Koko inc."

The organizational unit of the subject.

unit = "sleeping dept."

The locality of the subject.

locality =

The state of the certificate owner.

state = "Attiki"

The country of the subject. Two letter code.

country = GR

The common name of the certificate owner.

cn = "Cindy Lauper"

A user id of the certificate owner.

#uid = "clauper"

If the supported DN OIDs are not adequate you can set

any OID here.

For example set the X.520 Title and the X.520 Pseudonym

by using OID and string pairs.

#dn_oid = "2.5.4.12" "Dr." "2.5.4.65" "jackal"

This is deprecated and should not be used in new

certificates.

pkcs9_email = "none@none.org"

The serial number of the certificate

serial = 007

In how many days, counting from today, this certificate will expire.

expiration_days = 700

X.509 v3 extensions

A dnsname in case of a WWW server.

#dns_name = "www.none.org"

#dns_name = "www.morethanone.org"

Chapter 8: Included Programs 115

An IP address in case of a server.

#ip_address = "192.168.1.1"

An email in case of a person

email = "none@none.org"

An URL that has CRLs (certificate revocation lists)

available. Needed in CA certificates.

#crl_dist_points = "http://www.getcrl.crl/getcrl/"

Whether this is a CA certificate or not

#ca

Whether this certificate will be used for a TLS client

#tls_www_client

Whether this certificate will be used for a TLS server

#tls_www_server

Whether this certificate will be used to sign data (needed

in TLS DHE ciphersuites).

signing_key

Whether this certificate will be used to encrypt data (needed

in TLS RSA ciphersuites). Note that it is preferred to use different

keys for encryption and signing.

#encryption_key

Whether this key will be used to sign other certificates.

#cert_signing_key

Whether this key will be used to sign CRLs.

#crl_signing_key

Whether this key will be used to sign code.

#code_signing_key

Whether this key will be used to sign OCSP data.

#ocsp_signing_key

Whether this key will be used for time stamping.

#time_stamping_key

Whether this key will be used for IPsec IKE operations.

#ipsec_ike_key

Chapter 8: Included Programs 116

8.2 Invoking gnutls-cli

Simple client program to set up a TLS connection to some other computer. It sets up a
TLS connection and forwards data from the standard input to the secured socket and vice
versa.

GnuTLS test client

Usage: gnutls-cli [options] hostname

-d, --debug integer Enable debugging

-r, --resume Connect, establish a session. Connect

again and resume this session.

-s, --starttls Connect, establish a plain session and

start TLS when EOF or a SIGALRM is

received.

--crlf Send CR LF instead of LF.

--x509fmtder Use DER format for certificates to read

from.

-f, --fingerprint Send the openpgp fingerprint, instead

of the key.

--disable-extensions Disable all the TLS extensions.

--print-cert Print the certificate in PEM format.

--recordsize integer The maximum record size to advertize.

-V, --verbose More verbose output.

--ciphers cipher1 cipher2...

Ciphers to enable.

--protocols protocol1 protocol2...

Protocols to enable.

--comp comp1 comp2... Compression methods to enable.

--macs mac1 mac2... MACs to enable.

--kx kx1 kx2... Key exchange methods to enable.

--ctypes certType1 certType2...

Certificate types to enable.

--priority PRIORITY STRING

Priorities string.

--x509cafile FILE Certificate file to use.

--x509crlfile FILE CRL file to use.

--pgpkeyfile FILE PGP Key file to use.

--pgpkeyring FILE PGP Key ring file to use.

--pgpcertfile FILE PGP Public Key (certificate) file to

use.

--pgpsubkey HEX|auto PGP subkey to use.

--x509keyfile FILE X.509 key file to use.

--x509certfile FILE X.509 Certificate file to use.

--srpusername NAME SRP username to use.

--srppasswd PASSWD SRP password to use.

--pskusername NAME PSK username to use.

--pskkey KEY PSK key (in hex) to use.

Chapter 8: Included Programs 117

--opaque-prf-input DATA

Use Opaque PRF Input DATA.

-p, --port PORT The port to connect to.

--insecure Don’t abort program if server

certificate can’t be validated.

-l, --list Print a list of the supported

algorithms and modes.

-h, --help prints this help

-v, --version prints the program’s version number

To connect to a server using PSK authentication, you may use something like:

$ gnutls-cli -p 5556 test.gnutls.org --pskusername jas --pskkey 9e32cf7786321a828ef7668f09fb35db --priority NORMAL:+PSK:-RSA:-DHE-RSA -d 4711

8.2.1 Example client PSK connection

If your server only supports the PSK ciphersuite, connecting to it should be as simple as
connecting to the server:

$./gnutls-cli -p 5556 localhost

Resolving ’localhost’...

Connecting to ’127.0.0.1:5556’...

- PSK client callback. PSK hint ’psk_identity_hint’

Enter PSK identity: psk_identity

Enter password:

- PSK authentication. PSK hint ’psk_identity_hint’

- Version: TLS1.1

- Key Exchange: PSK

- Cipher: AES-128-CBC

- MAC: SHA1

- Compression: NULL

- Handshake was completed

- Simple Client Mode:

If the server supports several cipher suites, you may need to force it to chose PSK by using
a cipher priority parameter such as --priority NORMAL:+PSK:-RSA:-DHE-RSA:-DHE-PSK.

Instead of using the Netconf-way to derive the PSK key from a password, you can also give
the PSK username and key directly on the command line:

$./gnutls-cli -p 5556 localhost --pskusername psk_identity --pskkey 88f3824b3e5659f52d00e959bacab954b6540344

Resolving ’localhost’...

Connecting to ’127.0.0.1:5556’...

- PSK authentication. PSK hint ’psk_identity_hint’

- Version: TLS1.1

- Key Exchange: PSK

- Cipher: AES-128-CBC

- MAC: SHA1

- Compression: NULL

- Handshake was completed

- Simple Client Mode:

By keeping the --pskusername parameter and removing the --pskkey parameter, it will
query only for the password during the handshake.

Chapter 8: Included Programs 118

8.3 Invoking gnutls-cli-debug

This program was created to assist in debugging GnuTLS, but it might be useful to extract
a TLS server’s capabilities. It’s purpose is to connect onto a TLS server, perform some tests
and print the server’s capabilities. If called with the ‘-v’ parameter a more checks will be
performed. An example output is:

crystal:/cvs/gnutls/src$./gnutls-cli-debug localhost -p 5556

Resolving ’localhost’...

Connecting to ’127.0.0.1:5556’...

Checking for TLS 1.1 support... yes

Checking fallback from TLS 1.1 to... N/A

Checking for TLS 1.0 support... yes

Checking for SSL 3.0 support... yes

Checking for version rollback bug in RSA PMS... no

Checking for version rollback bug in Client Hello... no

Checking whether we need to disable TLS 1.0... N/A

Checking whether the server ignores the RSA PMS version... no

Checking whether the server can accept Hello Extensions... yes

Checking whether the server can accept cipher suites not in SSL 3.0 spec... yes

Checking whether the server can accept a bogus TLS record version in the client hello... yes

Checking for certificate information... N/A

Checking for trusted CAs... N/A

Checking whether the server understands TLS closure alerts... yes

Checking whether the server supports session resumption... yes

Checking for export-grade ciphersuite support... no

Checking RSA-export ciphersuite info... N/A

Checking for anonymous authentication support... no

Checking anonymous Diffie-Hellman group info... N/A

Checking for ephemeral Diffie-Hellman support... no

Checking ephemeral Diffie-Hellman group info... N/A

Checking for AES cipher support (TLS extension)... yes

Checking for 3DES cipher support... yes

Checking for ARCFOUR 128 cipher support... yes

Checking for ARCFOUR 40 cipher support... no

Checking for MD5 MAC support... yes

Checking for SHA1 MAC support... yes

Checking for ZLIB compression support (TLS extension)... yes

Checking for LZO compression support (GnuTLS extension)... yes

Checking for max record size (TLS extension)... yes

Checking for SRP authentication support (TLS extension)... yes

Checking for OpenPGP authentication support (TLS extension)... no

8.4 Invoking gnutls-serv

Simple server program that listens to incoming TLS connections.

GnuTLS test server

Usage: gnutls-serv [options]

-d, --debug integer Enable debugging

-g, --generate Generate Diffie-Hellman Parameters.

-p, --port integer The port to connect to.

-q, --quiet Suppress some messages.

--nodb Does not use the resume database.

--http Act as an HTTP Server.

Chapter 8: Included Programs 119

--echo Act as an Echo Server.

--dhparams FILE DH params file to use.

--x509fmtder Use DER format for certificates

--x509cafile FILE Certificate file to use.

--x509crlfile FILE CRL file to use.

--pgpkeyring FILE PGP Key ring file to use.

--pgpkeyfile FILE PGP Key file to use.

--pgpcertfile FILE PGP Public Key (certificate) file to

use.

--pgpsubkey HEX|auto PGP subkey to use.

--x509keyfile FILE X.509 key file to use.

--x509certfile FILE X.509 Certificate file to use.

--x509dsakeyfile FILE Alternative X.509 key file to use.

--x509dsacertfile FILE Alternative X.509 certificate file to

use.

-r, --require-cert Require a valid certificate.

-a, --disable-client-cert

Disable request for a client

certificate.

--pskpasswd FILE PSK password file to use.

--pskhint HINT PSK identity hint to use.

--srppasswd FILE SRP password file to use.

--srppasswdconf FILE SRP password conf file to use.

--opaque-prf-input DATA

Use Opaque PRF Input DATA.

--ciphers cipher1 cipher2...

Ciphers to enable.

--protocols protocol1 protocol2...

Protocols to enable.

--comp comp1 comp2... Compression methods to enable.

--macs mac1 mac2... MACs to enable.

--kx kx1 kx2... Key exchange methods to enable.

--ctypes certType1 certType2...

Certificate types to enable.

--priority PRIORITY STRING

Priorities string.

-l, --list Print a list of the supported

algorithms and modes.

-h, --help prints this help

-v, --version prints the program’s version number

8.4.1 Setting Up a Test HTTPS Server

Running your own TLS server based on GnuTLS can be useful when debugging clients
and/or GnuTLS itself. This section describes how to use gnutls-serv as a simple HTTPS
server.

The most basic server can be started as:

Chapter 8: Included Programs 120

gnutls-serv --http

It will only support anonymous ciphersuites, which many TLS clients refuse to use.

The next step is to add support for X.509. First we generate a CA:

certtool --generate-privkey > x509-ca-key.pem

echo ’cn = GnuTLS test CA’ > ca.tmpl

echo ’ca’ >> ca.tmpl

echo ’cert_signing_key’ >> ca.tmpl

certtool --generate-self-signed --load-privkey x509-ca-key.pem \

--template ca.tmpl --outfile x509-ca.pem

...

Then generate a server certificate. Remember to change the dns name value to the name
of your server host, or skip that command to avoid the field.

certtool --generate-privkey > x509-server-key.pem

echo ’organization = GnuTLS test server’ > server.tmpl

echo ’cn = test.gnutls.org’ >> server.tmpl

echo ’tls_www_server’ >> server.tmpl

echo ’encryption_key’ >> server.tmpl

echo ’signing_key’ >> server.tmpl

echo ’dns_name = test.gnutls.org’ >> server.tmpl

certtool --generate-certificate --load-privkey x509-server-key.pem \

--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

--template server.tmpl --outfile x509-server.pem

...

For use in the client, you may want to generate a client certificate as well.

certtool --generate-privkey > x509-client-key.pem

echo ’cn = GnuTLS test client’ > client.tmpl

echo ’tls_www_client’ >> client.tmpl

echo ’encryption_key’ >> client.tmpl

echo ’signing_key’ >> client.tmpl

certtool --generate-certificate --load-privkey x509-client-key.pem \

--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

--template client.tmpl --outfile x509-client.pem

...

To be able to import the client key/certificate into some applications, you will need to
convert them into a PKCS#12 structure. This also encrypts the security sensitive key with
a password.

certtool --to-p12 --load-ca-certificate x509-ca.pem --load-privkey x509-client-key.pem --load-certificate x509-client.pem --outder --outfile x509-client.p12

For icing, we’ll create a proxy certificate for the client too.

certtool --generate-privkey > x509-proxy-key.pem

echo ’cn = GnuTLS test client proxy’ > proxy.tmpl

certtool --generate-proxy --load-privkey x509-proxy-key.pem \

--load-ca-certificate x509-client.pem --load-ca-privkey x509-client-key.pem \

--load-certificate x509-client.pem --template proxy.tmpl \

--outfile x509-proxy.pem

Chapter 8: Included Programs 121

...

Then start the server again:

gnutls-serv --http \

--x509cafile x509-ca.pem \

--x509keyfile x509-server-key.pem \

--x509certfile x509-server.pem

Try connecting to the server using your web browser. Note that the server listens to port
5556 by default.

While you are at it, to allow connections using DSA, you can also create a DSA key and
certificate for the server. These credentials will be used in the final example below.

certtool --generate-privkey --dsa > x509-server-key-dsa.pem

certtool --generate-certificate --load-privkey x509-server-key-dsa.pem \

--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

--template server.tmpl --outfile x509-server-dsa.pem

...

The next step is to create OpenPGP credentials for the server.

gpg --gen-key

...enter whatever details you want, use ’test.gnutls.org’ as name...

Make a note of the OpenPGP key identifier of the newly generated key, here it was 5D1D14D8.
You will need to export the key for GnuTLS to be able to use it.

gpg -a --export 5D1D14D8 > openpgp-server.txt

gpg --export 5D1D14D8 > openpgp-server.bin

gpg --export-secret-keys 5D1D14D8 > openpgp-server-key.bin

gpg -a --export-secret-keys 5D1D14D8 > openpgp-server-key.txt

Let’s start the server with support for OpenPGP credentials:

gnutls-serv --http \

--pgpkeyfile openpgp-server-key.txt \

--pgpcertfile openpgp-server.txt

The next step is to add support for SRP authentication.

srptool --create-conf srp-tpasswd.conf

srptool --passwd-conf srp-tpasswd.conf --username jas --passwd srp-passwd.txt

Enter password: [TYPE "foo"]

Start the server with SRP support:

gnutls-serv --http \

--srppasswdconf srp-tpasswd.conf \

--srppasswd srp-passwd.txt

Let’s also add support for PSK.

$ psktool --passwd psk-passwd.txt

Start the server with PSK support:

gnutls-serv --http \

--pskpasswd psk-passwd.txt

Finally, we start the server with all the earlier parameters and you get this command:

Chapter 8: Included Programs 122

gnutls-serv --http \

--x509cafile x509-ca.pem \

--x509keyfile x509-server-key.pem \

--x509certfile x509-server.pem \

--x509dsakeyfile x509-server-key-dsa.pem \

--x509dsacertfile x509-server-dsa.pem \

--pgpkeyfile openpgp-server-key.txt \

--pgpcertfile openpgp-server.txt \

--srppasswdconf srp-tpasswd.conf \

--srppasswd srp-passwd.txt \

--pskpasswd psk-passwd.txt

8.4.2 Example server PSK connection

To set up a PSK server with gnutls-serv you need to create PSK password file (see
Section 8.5 [Invoking psktool], page 122). In the example below, I type password at the
prompt.

$./psktool -u psk_identity -p psks.txt -n psk_identity_hint

Enter password:

Key stored to psks.txt

$ cat psks.txt

psk_identity:88f3824b3e5659f52d00e959bacab954b6540344

$

After this, start the server pointing to the password file. We disable DHE-PSK.
$./gnutls-serv --pskpasswd psks.txt --pskhint psk_identity_hint --priority NORMAL:-DHE-PSK

Set static Diffie-Hellman parameters, consider --dhparams.

Echo Server ready. Listening to port ’5556’.

You can now connect to the server using a PSK client (see Section 8.2.1 [Example client
PSK connection], page 117).

8.5 Invoking psktool

This is a program to manage PSK username and keys.

PSKtool help

Usage : psktool [options]

-u, --username username

specify username.

-p, --passwd FILE specify a password file.

-n, --netconf-hint HINT

derive key from Netconf password, using

HINT as the psk_identity_hint.

-s, --keysize SIZE specify the key size in bytes.

-v, --version prints the program’s version number

-h, --help shows this help text

Normally the file will generate random keys for the indicate username. You
may also derive PSK keys from passwords, using the algorithm specified in
‘draft-ietf-netconf-tls-02.txt’. The algorithm needs a PSK identity hint, which you
specify using --netconf-hint. To derive a PSK key from a password with an empty PSK
identity hint, using --netconf-hint "".

Chapter 8: Included Programs 123

8.6 Invoking srptool

The ‘srptool’ is a very simple program that emulates the programs in the Stanford SRP
libraries, see http://srp.stanford.edu/. It is intended for use in places where you don’t
expect SRP authentication to be the used for system users.

Traditionally libsrp used two files. One called tpasswd which holds usernames and verifiers,
and tpasswd.conf which holds generators and primes.

How to use srptool:

• To create tpasswd.conf which holds the g and n values for SRP protocol (generator and
a large prime), run:

$ srptool --create-conf /etc/tpasswd.conf

• This command will create /etc/tpasswd and will add user ’test’ (you will also be
prompted for a password). Verifiers are stored by default in the way libsrp expects.

$ srptool --passwd /etc/tpasswd \

--passwd-conf /etc/tpasswd.conf -u test

• This command will check against a password. If the password matches the one in
/etc/tpasswd you will get an ok.

$ srptool --passwd /etc/tpasswd \

--passwd-conf /etc/tpasswd.conf --verify -u test

8.7 Invoking p11tool

The ‘p11tool’ is a program that helps with accessing tokens and security modules that
support the PKCS #11 API. It requires the individual PKCS #11 modules to be loaded
either with the --provider option, or by setting up the GnuTLS configuration file for
PKCS #11 as in [sec:pkcs11], page 33.

p11tool help

Usage: p11tool [options]

--export URL Export an object specified by a pkcs11

URL

--list-tokens List all available tokens

--list-mechanisms URL List all available mechanisms in token.

--list-all List all objects specified by a PKCS#11

URL

--list-all-certs List all certificates specified by a

PKCS#11 URL

--list-certs List certificates that have a private

key specified by a PKCS#11 URL

--list-privkeys List private keys specified by a

PKCS#11 URL

--list-trusted List certificates marked as trusted,

specified by a PKCS#11 URL

--initialize URL Initializes a PKCS11 token.

--write URL Writes loaded certificates, private or

secret keys to a PKCS11 token.

http://srp.stanford.edu/

Chapter 8: Included Programs 124

--delete URL Deletes objects matching the URL.

--label label Sets a label for the write operation.

--trusted Marks the certificate to be imported as

trusted.

--login Force login to token

--detailed-url Export detailed URLs.

--no-detailed-url Export less detailed URLs.

--secret-key HEX_KEY Provide a hex encoded secret key.

--load-privkey FILE Private key file to use.

--load-pubkey FILE Private key file to use.

--load-certificate FILE

Certificate file to use.

-8, --pkcs8 Use PKCS #8 format for private keys.

--inder Use DER format for input certificates

and private keys.

--inraw Use RAW/DER format for input

certificates and private keys.

--provider Library Specify the pkcs11 provider library

--outfile FILE Output file.

-d, --debug LEVEL specify the debug level. Default is 1.

-h, --help shows this help text

After being provided the available PKCS #11 modules, it can list all tokens available in
your system, the objects on the tokens, and perform operations on them.

Some examples on how to use p11tool:

• List all tokens

$ p11tool --list-tokens

• List all objects

$ p11tool --login --list-all

• To export an object

$ p11tool --login --export pkcs11:(OBJECT URL)

• To copy an object to a token

$ p11tool --login --write pkcs11:(TOKEN URL) --load-certificate (certificate file) --label "my_cert"

Note that typically PKCS #11 private key objects are not allowed to be extracted from the
token.

Chapter 9: Function Reference 125

9 Function Reference

9.1 Core Functions

The prototypes for the following functions lie in ‘gnutls/gnutls.h’.

gnutls alert get name

[Function]const char * gnutls_alert_get_name (gnutls alert description t
alert)

alert: is an alert number gnutls_session_t structure.

This function will return a string that describes the given alert number, or NULL. See
gnutls_alert_get().

Returns: string corresponding to gnutls_alert_description_t value.

gnutls alert get

[Function]gnutls_alert_description_t gnutls_alert_get (gnutls session t
session)

session: is a gnutls_session_t structure.

This function will return the last alert number received. This function should be
called if GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED
has been returned by a gnutls function. The peer may send alerts if he thinks some
things were not right. Check gnutls.h for the available alert descriptions.

If no alert has been received the returned value is undefined.

Returns: returns the last alert received, a gnutls_alert_description_t value.

gnutls alert send appropriate

[Function]int gnutls_alert_send_appropriate (gnutls session t session , int
err)

session: is a gnutls_session_t structure.

err: is an integer

Sends an alert to the peer depending on the error code returned by a gnutls function.
This function will call gnutls_error_to_alert() to determine the appropriate alert
to send.

This function may also return GNUTLS_E_AGAIN, or GNUTLS_E_INTERRUPTED.

If the return value is GNUTLS_E_INVALID_REQUEST, then no alert has been sent to the
peer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Chapter 9: Function Reference 126

gnutls alert send

[Function]int gnutls_alert_send (gnutls session t session , gnutls alert level t
level , gnutls alert description t desc)

session: is a gnutls_session_t structure.

level: is the level of the alert

desc: is the alert description

This function will send an alert to the peer in order to inform him of something
important (eg. his Certificate could not be verified). If the alert level is Fatal then
the peer is expected to close the connection, otherwise he may ignore the alert and
continue.

The error code of the underlying record send function will be returned, so you may
also receive GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN as well.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls anon allocate client credentials

[Function]int gnutls_anon_allocate_client_credentials
(gnutls anon client credentials t * sc)

sc: is a pointer to a gnutls_anon_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls anon allocate server credentials

[Function]int gnutls_anon_allocate_server_credentials
(gnutls anon server credentials t * sc)

sc: is a pointer to a gnutls_anon_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls anon free client credentials

[Function]void gnutls_anon_free_client_credentials
(gnutls anon client credentials t sc)

sc: is a gnutls_anon_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls anon free server credentials

[Function]void gnutls_anon_free_server_credentials
(gnutls anon server credentials t sc)

sc: is a gnutls_anon_server_credentials_t structure.

Chapter 9: Function Reference 127

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls anon set params function

[Function]void gnutls_anon_set_params_function
(gnutls anon server credentials t res , gnutls params function * func)

res: is a gnutls anon server credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for anonymous authentication. The callback should return zero on
success.

gnutls anon set server dh params

[Function]void gnutls_anon_set_server_dh_params
(gnutls anon server credentials t res , gnutls dh params t dh_params)

res: is a gnutls anon server credentials t structure

dh params: is a structure that holds Diffie-Hellman parameters.

This function will set the Diffie-Hellman parameters for an anonymous server to use.
These parameters will be used in Anonymous Diffie-Hellman cipher suites.

gnutls anon set server params function

[Function]void gnutls_anon_set_server_params_function
(gnutls anon server credentials t res , gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman
parameters for anonymous authentication. The callback should return zero on success.

gnutls auth client get type

[Function]gnutls_credentials_type_t gnutls_auth_client_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns the type of credentials that were used for client authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

Returns: The type of credentials for the client authentication schema, a gnutls_

credentials_type_t type.

gnutls auth get type

[Function]gnutls_credentials_type_t gnutls_auth_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Chapter 9: Function Reference 128

Returns type of credentials for the current authentication schema. The returned
information is to be used to distinguish the function used to access authentication
data.

Eg. for CERTIFICATE ciphersuites (key exchange algorithms: GNUTLS_KX_RSA,
GNUTLS_KX_DHE_RSA), the same function are to be used to access the authentication
data.

Returns: The type of credentials for the current authentication schema, a gnutls_

credentials_type_t type.

gnutls auth server get type

[Function]gnutls_credentials_type_t gnutls_auth_server_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns the type of credentials that were used for server authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

Returns: The type of credentials for the server authentication schema, a gnutls_

credentials_type_t type.

gnutls bye

[Function]int gnutls_bye (gnutls session t session , gnutls close request t how)
session: is a gnutls_session_t structure.

how : is an integer

Terminates the current TLS/SSL connection. The connection should have been initi-
ated using gnutls_handshake(). how should be one of GNUTLS_SHUT_RDWR, GNUTLS_
SHUT_WR.

In case of GNUTLS_SHUT_RDWR then the TLS connection gets terminated and further
receives and sends will be disallowed. If the return value is zero you may continue
using the connection. GNUTLS_SHUT_RDWR actually sends an alert containing a close
request and waits for the peer to reply with the same message.

In case of GNUTLS_SHUT_WR then the TLS connection gets terminated and further
sends will be disallowed. In order to reuse the connection you should wait for an
EOF from the peer. GNUTLS_SHUT_WR sends an alert containing a close request.

Note that not all implementations will properly terminate a TLS connection. Some of
them, usually for performance reasons, will terminate only the underlying transport
layer, thus causing a transmission error to the peer. This error cannot be distinguished
from a malicious party prematurely terminating the session, thus this behavior is not
recommended.

This function may also return GNUTLS_E_AGAIN or GNUTLS_E_INTERRUPTED; cf.
gnutls_record_get_direction().

Returns: GNUTLS_E_SUCCESS on success, or an error code, see function documentation
for entire semantics.

Chapter 9: Function Reference 129

gnutls certificate activation time peers

[Function]time_t gnutls_certificate_activation_time_peers
(gnutls session t session)

session: is a gnutls session

This function will return the peer’s certificate activation time. This is the creation
time for openpgp keys.

Returns: (time t)-1 on error.

Deprecated: gnutls_certificate_verify_peers2() now verifies activation times.

gnutls certificate allocate credentials

[Function]int gnutls_certificate_allocate_credentials
(gnutls certificate credentials t * res)

res: is a pointer to a gnutls_certificate_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls certificate client get request status

[Function]int gnutls_certificate_client_get_request_status
(gnutls session t session)

session: is a gnutls session

Get whether client certificate is requested or not.

Returns: 0 if the peer (server) did not request client authentication or 1 otherwise,
or a negative value in case of error.

gnutls certificate client set retrieve function

[Function]void gnutls_certificate_client_set_retrieve_function
(gnutls certificate credentials t cred , gnutls certificate client retrieve function
* func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called in order to retrieve the certificate to be used
in the handshake.

The callback’s function prototype is: int (*callback)(gnutls session t, const
gnutls datum t* req ca dn, int nreqs, const gnutls pk algorithm t* pk algos, int
pk algos length, gnutls retr st* st);

req_ca_cert is only used in X.509 certificates. Contains a list with the CA names
that the server considers trusted. Normally we should send a certificate that is signed
by one of these CAs. These names are DER encoded. To get a more meaningful value
use the function gnutls_x509_rdn_get().

pk_algos contains a list with server’s acceptable signature algorithms. The certificate
returned should support the server’s given algorithms.

Chapter 9: Function Reference 130

st should contain the certificates and private keys.

If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.

The callback function should set the certificate list to be sent, and return 0 on success.
If no certificate was selected then the number of certificates should be set to zero.
The value (-1) indicates error and the handshake will be terminated.

gnutls certificate expiration time peers

[Function]time_t gnutls_certificate_expiration_time_peers
(gnutls session t session)

session: is a gnutls session

This function will return the peer’s certificate expiration time.

Returns: (time t)-1 on error.

Deprecated: gnutls_certificate_verify_peers2() now verifies expiration times.

gnutls certificate free ca names

[Function]void gnutls_certificate_free_ca_names
(gnutls certificate credentials t sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the CA name in the given credentials. Clients may call
this to save some memory since in client side the CA names are not used. Servers
might want to use this function if a large list of trusted CAs is present and sending the
names of it would just consume bandwidth without providing information to client.

CA names are used by servers to advertize the CAs they support to clients.

gnutls certificate free cas

[Function]void gnutls_certificate_free_cas (gnutls certificate credentials t
sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the CAs associated with the given credentials. Servers
that do not use gnutls_certificate_verify_peers2() may call this to save some
memory.

gnutls certificate free credentials

[Function]void gnutls_certificate_free_credentials
(gnutls certificate credentials t sc)

sc: is a gnutls_certificate_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

This function does not free any temporary parameters associated with this structure
(ie RSA and DH parameters are not freed by this function).

Chapter 9: Function Reference 131

gnutls certificate free crls

[Function]void gnutls_certificate_free_crls (gnutls certificate credentials t
sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the CRLs associated with the given credentials.

gnutls certificate free keys

[Function]void gnutls_certificate_free_keys (gnutls certificate credentials t
sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the keys and the certificates associated with the given
credentials. This function must not be called when a TLS negotiation that uses the
credentials is in progress.

gnutls certificate get openpgp keyring

[Function]void gnutls_certificate_get_openpgp_keyring
(gnutls certificate credentials t sc , gnutls openpgp keyring t * keyring)

sc: is a gnutls_certificate_credentials_t structure.

keyring : the exported keyring. Should be treated as constant

This function will export the OpenPGP keyring associated with the given credentials.

Since: 2.4.0

gnutls certificate get ours

[Function]const gnutls_datum_t * gnutls_certificate_get_ours
(gnutls session t session)

session: is a gnutls session

Get the certificate as sent to the peer, in the last handshake. These certificates are in
raw format. In X.509 this is a certificate list. In OpenPGP this is a single certificate.

Returns: return a pointer to a gnutls_datum_t containing our certificates, or NULL
in case of an error or if no certificate was used.

gnutls certificate get peers

[Function]const gnutls_datum_t * gnutls_certificate_get_peers
(gnutls session t session , unsigned int * list_size)

session: is a gnutls session

list size: is the length of the certificate list

Get the peer’s raw certificate (chain) as sent by the peer. These certificates are in raw
format (DER encoded for X.509). In case of a X.509 then a certificate list may be
present. The first certificate in the list is the peer’s certificate, following the issuer’s
certificate, then the issuer’s issuer etc.

In case of OpenPGP keys a single key will be returned in raw format.

Returns: return a pointer to a gnutls_datum_t containing our certificates, or NULL
in case of an error or if no certificate was used.

Chapter 9: Function Reference 132

gnutls certificate get x509 cas

[Function]void gnutls_certificate_get_x509_cas
(gnutls certificate credentials t sc , gnutls x509 crt t ** x509_ca_list ,
unsigned int * ncas)

sc: is a gnutls_certificate_credentials_t structure.

x509 ca list: will point to the CA list. Should be treated as constant

ncas: the number of CAs

This function will export all the CAs associated with the given credentials.

Since: 2.4.0

gnutls certificate get x509 crls

[Function]void gnutls_certificate_get_x509_crls
(gnutls certificate credentials t sc , gnutls x509 crl t ** x509_crl_list ,
unsigned int * ncrls)

sc: is a gnutls_certificate_credentials_t structure.

x509 crl list: the exported CRL list. Should be treated as constant

ncrls: the number of exported CRLs

This function will export all the CRLs associated with the given credentials.

Since: 2.4.0

gnutls certificate send x509 rdn sequence

[Function]void gnutls_certificate_send_x509_rdn_sequence
(gnutls session t session , int status)

session: is a pointer to a gnutls_session_t structure.

status: is 0 or 1

If status is non zero, this function will order gnutls not to send the rdnSequence in
the certificate request message. That is the server will not advertize it’s trusted CAs
to the peer. If status is zero then the default behaviour will take effect, which is to
advertize the server’s trusted CAs.

This function has no effect in clients, and in authentication methods other than
certificate with X.509 certificates.

gnutls certificate server set request

[Function]void gnutls_certificate_server_set_request (gnutls session t
session , gnutls certificate request t req)

session: is a gnutls_session_t structure.

req: is one of GNUTLS CERT REQUEST, GNUTLS CERT REQUIRE

This function specifies if we (in case of a server) are going to send a certificate request
message to the client. If req is GNUTLS CERT REQUIRE then the server will
return an error if the peer does not provide a certificate. If you do not call this
function then the client will not be asked to send a certificate.

Chapter 9: Function Reference 133

gnutls certificate server set retrieve function

[Function]void gnutls_certificate_server_set_retrieve_function
(gnutls certificate credentials t cred ,
gnutls certificate server retrieve function * func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called in order to retrieve the certificate to be used
in the handshake.

The callback’s function prototype is: int (*callback)(gnutls session t, gnutls retr st*
st);

st should contain the certificates and private keys.

If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.

The callback function should set the certificate list to be sent, and return 0 on success.
The value (-1) indicates error and the handshake will be terminated.

gnutls certificate set dh params

[Function]void gnutls_certificate_set_dh_params
(gnutls certificate credentials t res , gnutls dh params t dh_params)

res: is a gnutls certificate credentials t structure

dh params: is a structure that holds Diffie-Hellman parameters.

This function will set the Diffie-Hellman parameters for a certificate server to use.
These parameters will be used in Ephemeral Diffie-Hellman cipher suites. Note that
only a pointer to the parameters are stored in the certificate handle, so if you deal-
locate the parameters before the certificate is deallocated, you must change the pa-
rameters stored in the certificate first.

gnutls certificate set params function

[Function]void gnutls_certificate_set_params_function
(gnutls certificate credentials t res , gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for certificate authentication. The callback should return zero on
success.

gnutls certificate set retrieve function

[Function]void gnutls_certificate_set_retrieve_function
(gnutls certificate credentials t cred , gnutls certificate retrieve function *
func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

Chapter 9: Function Reference 134

This function sets a callback to be called in order to retrieve the certificate to be used
in the handshake.

The callback’s function prototype is: int (*callback)(gnutls session t, const
gnutls datum t* req ca dn, int nreqs, const gnutls pk algorithm t* pk algos, int
pk algos length, gnutls retr2 st* st);

req_ca_cert is only used in X.509 certificates. Contains a list with the CA names
that the server considers trusted. Normally we should send a certificate that is signed
by one of these CAs. These names are DER encoded. To get a more meaningful value
use the function gnutls_x509_rdn_get().

pk_algos contains a list with server’s acceptable signature algorithms. The certificate
returned should support the server’s given algorithms.

st should contain the certificates and private keys.

If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.

In server side pk algos and req ca dn are NULL.

The callback function should set the certificate list to be sent, and return 0 on success.
If no certificate was selected then the number of certificates should be set to zero.
The value (-1) indicates error and the handshake will be terminated.

gnutls certificate set rsa export params

[Function]void gnutls_certificate_set_rsa_export_params
(gnutls certificate credentials t res , gnutls rsa params t rsa_params)

res: is a gnutls certificate credentials t structure

rsa params: is a structure that holds temporary RSA parameters.

This function will set the temporary RSA parameters for a certificate server to use.
These parameters will be used in RSA-EXPORT cipher suites.

gnutls certificate set verify flags

[Function]void gnutls_certificate_set_verify_flags
(gnutls certificate credentials t res , unsigned int flags)

res: is a gnutls certificate credentials t structure

flags: are the flags

This function will set the flags to be used at verification of the certificates. Flags
must be OR of the gnutls_certificate_verify_flags enumerations.

gnutls certificate set verify function

[Function]void gnutls_certificate_set_verify_function
(gnutls certificate credentials t cred , gnutls certificate verify function *
func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called when peer’s certificate has been received in
order to verify it on receipt rather than doing after the handshake is completed.

Chapter 9: Function Reference 135

The callback’s function prototype is: int (*callback)(gnutls session t);

If the callback function is provided then gnutls will call it, in the handshake, just
after the certificate message has been received. To verify or obtain the certificate
the gnutls_certificate_verify_peers2(), gnutls_certificate_type_get(),
gnutls_certificate_get_peers() functions can be used.

The callback function should return 0 for the handshake to continue or non-zero to
terminate.

Since: 2.10.0

gnutls certificate set verify limits

[Function]void gnutls_certificate_set_verify_limits
(gnutls certificate credentials t res , unsigned int max_bits , unsigned int
max_depth)

res: is a gnutls certificate credentials structure

max bits: is the number of bits of an acceptable certificate (default 8200)

max depth: is maximum depth of the verification of a certificate chain (default 5)

This function will set some upper limits for the default verification function, gnutls_
certificate_verify_peers2(), to avoid denial of service attacks. You can set them
to zero to disable limits.

gnutls certificate set x509 crl file

[Function]int gnutls_certificate_set_x509_crl_file
(gnutls certificate credentials t res , const char * crlfile ,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

crlfile: is a file containing the list of verified CRLs (DER or PEM list)

type: is PEM or DER

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Returns: number of CRLs processed or a negative value on error.

gnutls certificate set x509 crl mem

[Function]int gnutls_certificate_set_x509_crl_mem
(gnutls certificate credentials t res , const gnutls datum t * CRL ,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

CRL: is a list of trusted CRLs. They should have been verified before.

type: is DER or PEM

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified

Chapter 9: Function Reference 136

using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Returns: number of CRLs processed, or a negative value on error.

gnutls certificate set x509 crl

[Function]int gnutls_certificate_set_x509_crl
(gnutls certificate credentials t res , gnutls x509 crl t * crl_list , int
crl_list_size)

res: is a gnutls_certificate_credentials_t structure.

crl list: is a list of trusted CRLs. They should have been verified before.

crl list size: holds the size of the crl list

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 2.4.0

gnutls certificate set x509 key file

[Function]int gnutls_certificate_set_x509_key_file
(gnutls certificate credentials t res , const char * certfile , const char *
keyfile , gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

certfile: is a file that containing the certificate list (path) for the specified private key,
in PKCS7 format, or a list of certificates

keyfile: is a file that contains the private key

type: is PEM or DER

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server). For clients that wants to send more than its
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in certfile.

Currently only PKCS-1 encoded RSA and DSA private keys are accepted by this
function.

This function can also accept PKCS 11 URLs. In that case it will import the private
key and certificate indicated by the urls.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls certificate set x509 key mem

[Function]int gnutls_certificate_set_x509_key_mem
(gnutls certificate credentials t res , const gnutls datum t * cert , const
gnutls datum t * key , gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

Chapter 9: Function Reference 137

cert: contains a certificate list (path) for the specified private key

key : is the private key, or NULL

type: is PEM or DER

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).

Currently are supported: RSA PKCS-1 encoded private keys, DSA private keys.

DSA private keys are encoded the OpenSSL way, which is an ASN.1 DER sequence
of 6 INTEGERs - version, p, q, g, pub, priv.

Note that the keyUsage (2.5.29.15) PKIX extension in X.509 certificates is supported.
This means that certificates intended for signing cannot be used for ciphersuites that
require encryption.

If the certificate and the private key are given in PEM encoding then the strings that
hold their values must be null terminated.

The key may be NULL if you are using a sign callback, see gnutls_sign_callback_

set().

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls certificate set x509 key

[Function]int gnutls_certificate_set_x509_key
(gnutls certificate credentials t res , gnutls x509 crt t * cert_list , int
cert_list_size , gnutls x509 privkey t key)

res: is a gnutls_certificate_credentials_t structure.

cert list: contains a certificate list (path) for the specified private key

cert list size: holds the size of the certificate list

key : is a gnutls x509 privkey t key

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server). For clients that wants to send more than its
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in cert_list.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 2.4.0

gnutls certificate set x509 simple pkcs12 file

[Function]int gnutls_certificate_set_x509_simple_pkcs12_file
(gnutls certificate credentials t res , const char * pkcs12file ,
gnutls x509 crt fmt t type , const char * password)

res: is a gnutls_certificate_credentials_t structure.

pkcs12file: filename of file containing PKCS12 blob.

type: is PEM or DER of the pkcs12file.

password: optional password used to decrypt PKCS12 file, bags and keys.

Chapter 9: Function Reference 138

This function sets a certificate/private key pair and/or a CRL in the
gnutls certificate credentials t structure. This function may be called more than
once (in case multiple keys/certificates exist for the server).

MAC: ed PKCS12 files are supported. Encrypted PKCS12 bags are supported. En-
crypted PKCS8 private keys are supported. However, only password based security,
and the same password for all operations, are supported.

The private keys may be RSA PKCS1 or DSA private keys encoded in the OpenSSL
way.

PKCS12 file may contain many keys and/or certificates, and there is no way to
identify which key/certificate pair you want. You should make sure the PKCS12 file
only contain one key/certificate pair and/or one CRL.

It is believed that the limitations of this function is acceptable for most usage, and
that any more flexibility would introduce complexity that would make it harder to
use this functionality at all.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls certificate set x509 simple pkcs12 mem

[Function]int gnutls_certificate_set_x509_simple_pkcs12_mem
(gnutls certificate credentials t res , const gnutls datum t * p12blob ,
gnutls x509 crt fmt t type , const char * password)

res: is a gnutls_certificate_credentials_t structure.

p12blob: the PKCS12 blob.

type: is PEM or DER of the pkcs12file.

password: optional password used to decrypt PKCS12 file, bags and keys.

This function sets a certificate/private key pair and/or a CRL in the
gnutls certificate credentials t structure. This function may be called more than
once (in case multiple keys/certificates exist for the server).

MAC: ed PKCS12 files are supported. Encrypted PKCS12 bags are supported. En-
crypted PKCS8 private keys are supported. However, only password based security,
and the same password for all operations, are supported.

The private keys may be RSA PKCS1 or DSA private keys encoded in the OpenSSL
way.

PKCS12 file may contain many keys and/or certificates, and there is no way to
identify which key/certificate pair you want. You should make sure the PKCS12 file
only contain one key/certificate pair and/or one CRL.

It is believed that the limitations of this function is acceptable for most usage, and
that any more flexibility would introduce complexity that would make it harder to
use this functionality at all.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 2.8.0

Chapter 9: Function Reference 139

gnutls certificate set x509 trust file

[Function]int gnutls_certificate_set_x509_trust_file
(gnutls certificate credentials t res , const char * cafile ,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

cafile: is a file containing the list of trusted CAs (DER or PEM list)

type: is PEM or DER

This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

In case of a server the names of the CAs set here will be sent to the client if a certificate
request is sent. This can be disabled using gnutls_certificate_send_x509_rdn_

sequence().

This function can also accept PKCS 11 URLs. In that case it will import all certifi-
cates that are marked as trusted.

Returns: number of certificates processed, or a negative value on error.

gnutls certificate set x509 trust mem

[Function]int gnutls_certificate_set_x509_trust_mem
(gnutls certificate credentials t res , const gnutls datum t * ca ,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

ca: is a list of trusted CAs or a DER certificate

type: is DER or PEM

This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence().

Returns: the number of certificates processed or a negative value on error.

gnutls certificate set x509 trust

[Function]int gnutls_certificate_set_x509_trust
(gnutls certificate credentials t res , gnutls x509 crt t * ca_list , int
ca_list_size)

res: is a gnutls_certificate_credentials_t structure.

ca list: is a list of trusted CAs

ca list size: holds the size of the CA list

This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified

Chapter 9: Function Reference 140

using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence().

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 2.4.0

gnutls certificate type get id

[Function]gnutls_certificate_type_t gnutls_certificate_type_get_id
(const char * name)

name: is a certificate type name

The names are compared in a case insensitive way.

Returns: a gnutls_certificate_type_t for the specified in a string certificate type,
or GNUTLS_CRT_UNKNOWN on error.

gnutls certificate type get name

[Function]const char * gnutls_certificate_type_get_name
(gnutls certificate type t type)

type: is a certificate type

Convert a gnutls_certificate_type_t type to a string.

Returns: a string that contains the name of the specified certificate type, or NULL in
case of unknown types.

gnutls certificate type get

[Function]gnutls_certificate_type_t gnutls_certificate_type_get
(gnutls session t session)

session: is a gnutls_session_t structure.

The certificate type is by default X.509, unless it is negotiated as a TLS extension.

Returns: the currently used gnutls_certificate_type_t certificate type.

gnutls certificate type list

[Function]const gnutls_certificate_type_t *
gnutls_certificate_type_list (void)

Get a list of certificate types. Note that to be able to use OpenPGP certificates, you
must link to libgnutls-extra and call gnutls_global_init_extra().

Returns: a zero-terminated list of gnutls_certificate_type_t integers indicating
the available certificate types.

gnutls certificate type set priority

[Function]int gnutls_certificate_type_set_priority (gnutls session t
session , const int * list)

session: is a gnutls_session_t structure.

Chapter 9: Function Reference 141

list: is a 0 terminated list of gnutls certificate type t elements.

Sets the priority on the certificate types supported by gnutls. Priority is higher
for elements specified before others. After specifying the types you want, you must
append a 0. Note that the certificate type priority is set on the client. The server
does not use the cert type priority except for disabling types that were not specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls certificate verify peers2

[Function]int gnutls_certificate_verify_peers2 (gnutls session t session ,
unsigned int * status)

session: is a gnutls session

status: is the output of the verification

This function will try to verify the peer’s certificate and return its status
(trusted, invalid etc.). The value of status should be one or more of the
gnutls certificate status t enumerated elements bitwise or’d. To avoid denial of
service attacks some default upper limits regarding the certificate key size and chain
size are set. To override them use gnutls_certificate_set_verify_limits().

Note that you must also check the peer’s name in order to check if the verified cer-
tificate belongs to the actual peer.

This function uses gnutls_x509_crt_list_verify() with the CAs in the credentials
as trusted CAs.

Returns: a negative error code on error and zero on success.

gnutls certificate verify peers

[Function]int gnutls_certificate_verify_peers (gnutls session t session)
session: is a gnutls session

This function will try to verify the peer’s certificate and return its status (trusted,
invalid etc.). However you must also check the peer’s name in order to check if the
verified certificate belongs to the actual peer.

This function uses gnutls_x509_crt_list_verify().

Returns: one or more of the gnutls_certificate_status_t enumerated elements
bitwise or’d, or a negative value on error.

Deprecated: Use gnutls_certificate_verify_peers2() instead.

gnutls check version

[Function]const char * gnutls_check_version (const char * req_version)
req version: version string to compare with, or NULL.

Check GnuTLS Library version.

See GNUTLS_VERSION for a suitable req_version string.

Return value: Check that the version of the library is at minimum the one given as
a string in req_version and return the actual version string of the library; return
NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

Chapter 9: Function Reference 142

gnutls cipher decrypt2

[Function]int gnutls_cipher_decrypt2 (gnutls cipher hd t handle , const void
* ciphertext , size t ciphertextlen , void * text , size t textlen)

handle: is a gnutls_cipher_hd_t structure.

ciphertext: the data to encrypt

ciphertextlen: The length of data to encrypt

text: the decrypted data

textlen: The available length for decrypted data

This function will decrypt the given data using the algorithm specified by the context.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls cipher decrypt

[Function]int gnutls_cipher_decrypt (gnutls cipher hd t handle , void *
ciphertext , size t ciphertextlen)

handle: is a gnutls_cipher_hd_t structure.

ciphertext: the data to encrypt

ciphertextlen: The length of data to encrypt

This function will decrypt the given data using the algorithm specified by the context.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls cipher deinit

[Function]void gnutls_cipher_deinit (gnutls cipher hd t handle)
handle: is a gnutls_cipher_hd_t structure.

This function will deinitialize all resources occupied by the given encryption context.

Since: 2.10.0

gnutls cipher encrypt2

[Function]int gnutls_cipher_encrypt2 (gnutls cipher hd t handle , void *
text , size t textlen , void * ciphertext , size t ciphertextlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to encrypt

textlen: The length of data to encrypt

ciphertext: the encrypted data

ciphertextlen: The available length for encrypted data

This function will encrypt the given data using the algorithm specified by the context.

Returns: Zero or a negative value on error.

Since: 2.10.0

Chapter 9: Function Reference 143

gnutls cipher encrypt

[Function]int gnutls_cipher_encrypt (gnutls cipher hd t handle , void *
text , size t textlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to encrypt

textlen: The length of data to encrypt

This function will encrypt the given data using the algorithm specified by the context.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls cipher get block size

[Function]int gnutls_cipher_get_block_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Get block size for encryption algorithm.

Returns: block size for encryption algorithm.

Since: 2.10.0

gnutls cipher get id

[Function]gnutls_cipher_algorithm_t gnutls_cipher_get_id (const char *
name)

name: is a MAC algorithm name

The names are compared in a case insensitive way.

Returns: return a gnutls_cipher_algorithm_t value corresponding to the specified
cipher, or GNUTLS_CIPHER_UNKNOWN on error.

gnutls cipher get key size

[Function]size_t gnutls_cipher_get_key_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Get key size for cipher.

Returns: length (in bytes) of the given cipher’s key size, or 0 if the given cipher is
invalid.

gnutls cipher get name

[Function]const char * gnutls_cipher_get_name (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Convert a gnutls_cipher_algorithm_t type to a string.

Returns: a pointer to a string that contains the name of the specified cipher, or NULL.

Chapter 9: Function Reference 144

gnutls cipher get

[Function]gnutls_cipher_algorithm_t gnutls_cipher_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Get currently used cipher.

Returns: the currently used cipher, a gnutls_cipher_algorithm_t type.

gnutls cipher init

[Function]int gnutls_cipher_init (gnutls cipher hd t * handle ,
gnutls cipher algorithm t cipher , const gnutls datum t * key , const
gnutls datum t * iv)

handle: is a gnutls_cipher_hd_t structure.

cipher: the encryption algorithm to use

key : The key to be used for encryption

iv : The IV to use (if not applicable set NULL)

This function will initialize an context that can be used for encryption/decryption
of data. This will effectively use the current crypto backend in use by gnutls or the
cryptographic accelerator in use.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls cipher list

[Function]const gnutls_cipher_algorithm_t * gnutls_cipher_list (
void)

Get a list of supported cipher algorithms. Note that not necessarily all ciphers are
supported as TLS cipher suites. For example, DES is not supported as a cipher suite,
but is supported for other purposes (e.g., PKCS8 or similar).

Returns: a zero-terminated list of gnutls_cipher_algorithm_t integers indicating
the available ciphers.

gnutls cipher set priority

[Function]int gnutls_cipher_set_priority (gnutls session t session , const
int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls cipher algorithm t elements.

Sets the priority on the ciphers supported by gnutls. Priority is higher for elements
specified before others. After specifying the ciphers you want, you must append a 0.
Note that the priority is set on the client. The server does not use the algorithm’s
priority except for disabling algorithms that were not specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Chapter 9: Function Reference 145

gnutls cipher suite get name

[Function]const char * gnutls_cipher_suite_get_name
(gnutls kx algorithm t kx_algorithm , gnutls cipher algorithm t
cipher_algorithm , gnutls mac algorithm t mac_algorithm)

kx algorithm: is a Key exchange algorithm

cipher algorithm: is a cipher algorithm

mac algorithm: is a MAC algorithm

Note that the full cipher suite name must be prepended by TLS or SSL depending of
the protocol in use.

Returns: a string that contains the name of a TLS cipher suite, specified by the given
algorithms, or NULL.

gnutls cipher suite info

[Function]const char * gnutls_cipher_suite_info (size t idx , char *
cs_id , gnutls kx algorithm t * kx , gnutls cipher algorithm t * cipher ,
gnutls mac algorithm t * mac , gnutls protocol t * min_version)

idx: index of cipher suite to get information about, starts on 0.

cs id: output buffer with room for 2 bytes, indicating cipher suite value

kx: output variable indicating key exchange algorithm, or NULL.

cipher: output variable indicating cipher, or NULL.

mac: output variable indicating MAC algorithm, or NULL.

Get information about supported cipher suites. Use the function iteratively to get
information about all supported cipher suites. Call with idx=0 to get information
about first cipher suite, then idx=1 and so on until the function returns NULL.

Returns: the name of idx cipher suite, and set the information about the cipher suite
in the output variables. If idx is out of bounds, NULL is returned.

gnutls compression get id

[Function]gnutls_compression_method_t gnutls_compression_get_id
(const char * name)

name: is a compression method name

The names are compared in a case insensitive way.

Returns: an id of the specified in a string compression method, or GNUTLS_COMP_

UNKNOWN on error.

gnutls compression get name

[Function]const char * gnutls_compression_get_name
(gnutls compression method t algorithm)

algorithm: is a Compression algorithm

Convert a gnutls_compression_method_t value to a string.

Returns: a pointer to a string that contains the name of the specified compression
algorithm, or NULL.

Chapter 9: Function Reference 146

gnutls compression get

[Function]gnutls_compression_method_t gnutls_compression_get
(gnutls session t session)

session: is a gnutls_session_t structure.

Get currently used compression algorithm.

Returns: the currently used compression method, a gnutls_compression_method_t

value.

gnutls compression list

[Function]const gnutls_compression_method_t *
gnutls_compression_list (void)

Get a list of compression methods. Note that to be able to use LZO compression,
you must link to libgnutls-extra and call gnutls_global_init_extra().

Returns: a zero-terminated list of gnutls_compression_method_t integers indicat-
ing the available compression methods.

gnutls compression set priority

[Function]int gnutls_compression_set_priority (gnutls session t session ,
const int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls compression method t elements.

Sets the priority on the compression algorithms supported by gnutls. Priority is higher
for elements specified before others. After specifying the algorithms you want, you
must append a 0. Note that the priority is set on the client. The server does not use
the algorithm’s priority except for disabling algorithms that were not specified.

TLS 1.0 does not define any compression algorithms except NULL. Other compression
algorithms are to be considered as gnutls extensions.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls credentials clear

[Function]void gnutls_credentials_clear (gnutls session t session)
session: is a gnutls_session_t structure.

Clears all the credentials previously set in this session.

gnutls credentials set

[Function]int gnutls_credentials_set (gnutls session t session ,
gnutls credentials type t type , void * cred)

session: is a gnutls_session_t structure.

type: is the type of the credentials

cred: is a pointer to a structure.

Chapter 9: Function Reference 147

Sets the needed credentials for the specified type. Eg username, password - or public
and private keys etc. The cred parameter is a structure that depends on the specified
type and on the current session (client or server).

In order to minimize memory usage, and share credentials between several threads
gnutls keeps a pointer to cred, and not the whole cred structure. Thus you will have
to keep the structure allocated until you call gnutls_deinit().

For GNUTLS_CRD_ANON, cred should be gnutls_anon_client_credentials_t in case
of a client. In case of a server it should be gnutls_anon_server_credentials_t.

For GNUTLS_CRD_SRP, cred should be gnutls_srp_client_credentials_t in case of
a client, and gnutls_srp_server_credentials_t, in case of a server.

For GNUTLS_CRD_CERTIFICATE, cred should be gnutls_certificate_credentials_
t.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls crypto bigint register2

[Function]int gnutls_crypto_bigint_register2 (int priority , int version ,
const gnutls crypto bigint st * s)

priority : is the priority of the interface

version: should be set to GNUTLS_CRYPTO_API_VERSION

s: is a structure holding new interface’s data

This function will register an interface for gnutls to operate on big integers. Any
interface registered will override the included interface. The interface with the lowest
priority will be used by gnutls.

Note that the bigint interface must interoperate with the public key interface. Thus
if this interface is updated the gnutls_crypto_pk_register() should also be used.

This function should be called before gnutls_global_init().

For simplicity you can use the convenience gnutls_crypto_bigint_register()

macro.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.6.0

gnutls crypto cipher register2

[Function]int gnutls_crypto_cipher_register2 (int priority , int version ,
const gnutls crypto cipher st * s)

priority : is the priority of the cipher interface

version: should be set to GNUTLS_CRYPTO_API_VERSION

s: is a structure holding new interface’s data

This function will register a cipher interface to be used by gnutls. Any interface
registered will override the included engine and by convention kernel implemented
interfaces should have priority of 90. The interface with the lowest priority will be
used by gnutls.

Chapter 9: Function Reference 148

This function should be called before gnutls_global_init().

For simplicity you can use the convenience gnutls_crypto_cipher_register()

macro.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.6.0

gnutls crypto digest register2

[Function]int gnutls_crypto_digest_register2 (int priority , int version ,
const gnutls crypto digest st * s)

priority : is the priority of the digest interface

version: should be set to GNUTLS_CRYPTO_API_VERSION

s: is a structure holding new interface’s data

This function will register a digest interface to be used by gnutls. Any interface
registered will override the included engine and by convention kernel implemented
interfaces should have priority of 90. The interface with the lowest priority will be
used by gnutls.

This function should be called before gnutls_global_init().

For simplicity you can use the convenience gnutls_crypto_digest_register()

macro.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.6.0

gnutls crypto mac register2

[Function]int gnutls_crypto_mac_register2 (int priority , int version ,
const gnutls crypto mac st * s)

priority : is the priority of the mac interface

version: should be set to GNUTLS_CRYPTO_API_VERSION

s: is a structure holding new interface’s data

This function will register a mac interface to be used by gnutls. Any interface regis-
tered will override the included engine and by convention kernel implemented inter-
faces should have priority of 90. The interface with the lowest priority will be used
by gnutls.

This function should be called before gnutls_global_init().

For simplicity you can use the convenience gnutls_crypto_digest_register()

macro.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.6.0

Chapter 9: Function Reference 149

gnutls crypto pk register2

[Function]int gnutls_crypto_pk_register2 (int priority , int version , const
gnutls crypto pk st * s)

priority : is the priority of the interface

version: should be set to GNUTLS_CRYPTO_API_VERSION

s: is a structure holding new interface’s data

This function will register an interface for gnutls to operate on public key operations.
Any interface registered will override the included interface. The interface with the
lowest priority will be used by gnutls.

Note that the bigint interface must interoperate with the bigint interface. Thus if this
interface is updated the gnutls_crypto_bigint_register() should also be used.

This function should be called before gnutls_global_init().

For simplicity you can use the convenience gnutls_crypto_pk_register() macro.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.6.0

gnutls crypto rnd register2

[Function]int gnutls_crypto_rnd_register2 (int priority , int version ,
const gnutls crypto rnd st * s)

priority : is the priority of the generator

version: should be set to GNUTLS_CRYPTO_API_VERSION

s: is a structure holding new generator’s data

This function will register a random generator to be used by gnutls. Any generator
registered will override the included generator and by convention kernel implemented
generators have priority of 90. The generator with the lowest priority will be used by
gnutls.

This function should be called before gnutls_global_init().

For simplicity you can use the convenience gnutls_crypto_rnd_register() macro.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.6.0

gnutls crypto single cipher register2

[Function]int gnutls_crypto_single_cipher_register2
(gnutls cipher algorithm t algorithm , int priority , int version , const
gnutls crypto cipher st * s)

algorithm: is the gnutls algorithm identifier

priority : is the priority of the algorithm

version: should be set to GNUTLS_CRYPTO_API_VERSION

s: is a structure holding new cipher’s data

This function will register a cipher algorithm to be used by gnutls. Any algorithm
registered will override the included algorithms and by convention kernel implemented

Chapter 9: Function Reference 150

algorithms have priority of 90. The algorithm with the lowest priority will be used
by gnutls.

This function should be called before gnutls_global_init().

For simplicity you can use the convenience gnutls_crypto_single_cipher_

register() macro.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.6.0

gnutls crypto single digest register2

[Function]int gnutls_crypto_single_digest_register2
(gnutls digest algorithm t algorithm , int priority , int version , const
gnutls crypto digest st * s)

algorithm: is the gnutls algorithm identifier

priority : is the priority of the algorithm

version: should be set to GNUTLS_CRYPTO_API_VERSION

s: is a structure holding new algorithms’s data

This function will register a digest (hash) algorithm to be used by gnutls. Any
algorithm registered will override the included algorithms and by convention kernel
implemented algorithms have priority of 90. The algorithm with the lowest priority
will be used by gnutls.

This function should be called before gnutls_global_init().

For simplicity you can use the convenience gnutls_crypto_single_digest_

register() macro.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.6.0

gnutls crypto single mac register2

[Function]int gnutls_crypto_single_mac_register2 (gnutls mac algorithm t
algorithm , int priority , int version , const gnutls crypto mac st * s)

algorithm: is the gnutls algorithm identifier

priority : is the priority of the algorithm

version: should be set to GNUTLS_CRYPTO_API_VERSION

s: is a structure holding new algorithms’s data

This function will register a MAC algorithm to be used by gnutls. Any algorithm
registered will override the included algorithms and by convention kernel implemented
algorithms have priority of 90. The algorithm with the lowest priority will be used
by gnutls.

This function should be called before gnutls_global_init().

For simplicity you can use the convenience gnutls_crypto_single_mac_register()
macro.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.6.0

Chapter 9: Function Reference 151

gnutls db check entry

[Function]int gnutls_db_check_entry (gnutls session t session ,
gnutls datum t session_entry)

session: is a gnutls_session_t structure.

session entry : is the session data (not key)

Check if database entry has expired. This function is to be used when you want to
clear unnesessary session which occupy space in your backend.

Returns: Returns GNUTLS_E_EXPIRED, if the database entry has expired or 0 other-
wise.

gnutls db get ptr

[Function]void * gnutls_db_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.

Get db function pointer.

Returns: the pointer that will be sent to db store, retrieve and delete functions, as
the first argument.

gnutls db remove session

[Function]void gnutls_db_remove_session (gnutls session t session)
session: is a gnutls_session_t structure.

This function will remove the current session data from the session database. This
will prevent future handshakes reusing these session data. This function should be
called if a session was terminated abnormally, and before gnutls_deinit() is called.

Normally gnutls_deinit() will remove abnormally terminated sessions.

gnutls db set cache expiration

[Function]void gnutls_db_set_cache_expiration (gnutls session t session ,
int seconds)

session: is a gnutls_session_t structure.

seconds: is the number of seconds.

Set the expiration time for resumed sessions. The default is 3600 (one hour) at the
time writing this.

gnutls db set ptr

[Function]void gnutls_db_set_ptr (gnutls session t session , void * ptr)
session: is a gnutls_session_t structure.

ptr: is the pointer

Sets the pointer that will be provided to db store, retrieve and delete functions, as
the first argument.

Chapter 9: Function Reference 152

gnutls db set remove function

[Function]void gnutls_db_set_remove_function (gnutls session t session ,
gnutls db remove func rem_func)

session: is a gnutls_session_t structure.

rem func: is the function.

Sets the function that will be used to remove data from the resumed sessions database.
This function must return 0 on success.

The first argument to rem_func will be null unless gnutls_db_set_ptr() has been
called.

gnutls db set retrieve function

[Function]void gnutls_db_set_retrieve_function (gnutls session t session ,
gnutls db retr func retr_func)

session: is a gnutls_session_t structure.

retr func: is the function.

Sets the function that will be used to retrieve data from the resumed sessions database.
This function must return a gnutls datum t containing the data on success, or a
gnutls datum t containing null and 0 on failure.

The datum’s data must be allocated using the function gnutls_malloc().

The first argument to retr_func will be null unless gnutls_db_set_ptr() has been
called.

gnutls db set store function

[Function]void gnutls_db_set_store_function (gnutls session t session ,
gnutls db store func store_func)

session: is a gnutls_session_t structure.

store func: is the function

Sets the function that will be used to store data from the resumed sessions database.
This function must remove 0 on success.

The first argument to store_func() will be null unless gnutls_db_set_ptr() has
been called.

gnutls deinit

[Function]void gnutls_deinit (gnutls session t session)
session: is a gnutls_session_t structure.

This function clears all buffers associated with the session. This function will also
remove session data from the session database if the session was terminated abnor-
mally.

Chapter 9: Function Reference 153

gnutls dh get group

[Function]int gnutls_dh_get_group (gnutls session t session , gnutls datum t
* raw_gen , gnutls datum t * raw_prime)

session: is a gnutls session

raw gen: will hold the generator.

raw prime: will hold the prime.

This function will return the group parameters used in the last Diffie-Hellman key
exchange with the peer. These are the prime and the generator used. This func-
tion should be used for both anonymous and ephemeral Diffie-Hellman. The output
parameters must be freed with gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls dh get peers public bits

[Function]int gnutls_dh_get_peers_public_bits (gnutls session t session)
session: is a gnutls session

Get the Diffie-Hellman public key bit size. Can be used for both anonymous and
ephemeral Diffie-Hellman.

Returns: the public key bit size used in the last Diffie-Hellman key exchange with
the peer, or a negative value in case of error.

gnutls dh get prime bits

[Function]int gnutls_dh_get_prime_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits of the prime used in the last Diffie-Hellman key
exchange with the peer. Should be used for both anonymous and ephemeral Diffie-
Hellman. Note that some ciphers, like RSA and DSA without DHE, does not use a
Diffie-Hellman key exchange, and then this function will return 0.

Returns: The Diffie-Hellman bit strength is returned, or 0 if no Diffie-Hellman key
exchange was done, or a negative error code on failure.

gnutls dh get pubkey

[Function]int gnutls_dh_get_pubkey (gnutls session t session , gnutls datum t
* raw_key)

session: is a gnutls session

raw key : will hold the public key.

This function will return the peer’s public key used in the last Diffie-Hellman key
exchange. This function should be used for both anonymous and ephemeral Diffie-
Hellman. The output parameters must be freed with gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Chapter 9: Function Reference 154

gnutls dh get secret bits

[Function]int gnutls_dh_get_secret_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits used in the last Diffie-Hellman key exchange with
the peer. Should be used for both anonymous and ephemeral Diffie-Hellman.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls dh params cpy

[Function]int gnutls_dh_params_cpy (gnutls dh params t dst ,
gnutls dh params t src)

dst: Is the destination structure, which should be initialized.

src: Is the source structure

This function will copy the DH parameters structure from source to destination.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls dh params deinit

[Function]void gnutls_dh_params_deinit (gnutls dh params t dh_params)
dh params: Is a structure that holds the prime numbers

This function will deinitialize the DH parameters structure.

gnutls dh params export pkcs3

[Function]int gnutls_dh_params_export_pkcs3 (gnutls dh params t params ,
gnutls x509 crt fmt t format , unsigned char * params_data , size t *
params_data_size)

params: Holds the DH parameters

format: the format of output params. One of PEM or DER.

params data: will contain a PKCS3 DHParams structure PEM or DER encoded

params data size: holds the size of params data (and will be replaced by the actual
size of parameters)

This function will export the given dh parameters to a PKCS3 DHParams structure.
This is the format generated by "openssl dhparam" tool. If the buffer provided is
not long enough to hold the output, then GNUTLS E SHORT MEMORY BUFFER
will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN DH PARAME-
TERS".

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

Chapter 9: Function Reference 155

gnutls dh params export raw

[Function]int gnutls_dh_params_export_raw (gnutls dh params t params ,
gnutls datum t * prime , gnutls datum t * generator , unsigned int * bits)

params: Holds the DH parameters

prime: will hold the new prime

generator: will hold the new generator

bits: if non null will hold is the prime’s number of bits

This function will export the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters will be allocated using gnutls_malloc() and will
be stored in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls dh params generate2

[Function]int gnutls_dh_params_generate2 (gnutls dh params t params ,
unsigned int bits)

params: Is the structure that the DH parameters will be stored

bits: is the prime’s number of bits

This function will generate a new pair of prime and generator for use in the Diffie-
Hellman key exchange. The new parameters will be allocated using gnutls_malloc()
and will be stored in the appropriate datum. This function is normally slow.

Do not set the number of bits directly, use gnutls_sec_param_to_pk_bits() to get
bits for GNUTLS_PK_DSA. Also note that the DH parameters are only useful to servers.
Since clients use the parameters sent by the server, it’s of no use to call this in client
side.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls dh params import pkcs3

[Function]int gnutls_dh_params_import_pkcs3 (gnutls dh params t params ,
const gnutls datum t * pkcs3_params , gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to

pkcs3 params: should contain a PKCS3 DHParams structure PEM or DER encoded

format: the format of params. PEM or DER.

This function will extract the DHParams found in a PKCS3 formatted structure.
This is the format generated by "openssl dhparam" tool.

If the structure is PEM encoded, it should have a header of "BEGIN DH PARAME-
TERS".

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

Chapter 9: Function Reference 156

gnutls dh params import raw

[Function]int gnutls_dh_params_import_raw (gnutls dh params t dh_params ,
const gnutls datum t * prime , const gnutls datum t * generator)

dh params: Is a structure that will hold the prime numbers

prime: holds the new prime

generator: holds the new generator

This function will replace the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters should be stored in the appropriate gnutls datum.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls dh params init

[Function]int gnutls_dh_params_init (gnutls dh params t * dh_params)
dh params: Is a structure that will hold the prime numbers

This function will initialize the DH parameters structure.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls dh set prime bits

[Function]void gnutls_dh_set_prime_bits (gnutls session t session , unsigned
int bits)

session: is a gnutls_session_t structure.

bits: is the number of bits

This function sets the number of bits, for use in an Diffie-Hellman key exchange. This
is used both in DH ephemeral and DH anonymous cipher suites. This will set the
minimum size of the prime that will be used for the handshake.

In the client side it sets the minimum accepted number of bits. If a server sends a
prime with less bits than that GNUTLS_E_DH_PRIME_UNACCEPTABLE will be returned
by the handshake.

This function has no effect in server side.

gnutls error is fatal

[Function]int gnutls_error_is_fatal (int error)
error: is a GnuTLS error code, a negative value

If a GnuTLS function returns a negative value you may feed that value to this function
to see if the error condition is fatal.

Note that you may want to check the error code manually, since some non-fatal errors
to the protocol may be fatal for you program.

This function is only useful if you are dealing with errors from the record layer or the
handshake layer.

Returns: 1 if the error code is fatal, for positive error values, 0 is returned. For
unknown error values, -1 is returned.

Chapter 9: Function Reference 157

gnutls error to alert

[Function]int gnutls_error_to_alert (int err , int * level)
err: is a negative integer

level: the alert level will be stored there

Get an alert depending on the error code returned by a gnutls function. All alerts
sent by this function should be considered fatal. The only exception is when err is
GNUTLS_E_REHANDSHAKE, where a warning alert should be sent to the peer indicating
that no renegotiation will be performed.

If there is no mapping to a valid alert the alert to indicate internal error is returned.

Returns: the alert code to use for a particular error code.

gnutls ext register

[Function]int gnutls_ext_register (int type , const char * name ,
gnutls ext parse type t parse_type , gnutls ext recv func recv_func ,
gnutls ext send func send_func)

type: the 16-bit integer referring to the extension type

name: human printable name of the extension used for debugging

parse type: either GNUTLS_EXT_TLS or GNUTLS_EXT_APPLICATION.

recv func: a function to receive extension data

send func: a function to send extension data

This function is used to register a new TLS extension handler.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Deprecated in: 2.12.0

gnutls fingerprint

[Function]int gnutls_fingerprint (gnutls digest algorithm t algo , const
gnutls datum t * data , void * result , size t * result_size)

algo: is a digest algorithm

data: is the data

result: is the place where the result will be copied (may be null).

result size: should hold the size of the result. The actual size of the returned result
will also be copied there.

This function will calculate a fingerprint (actually a hash), of the given data. The
result is not printable data. You should convert it to hex, or to something else
printable.

This is the usual way to calculate a fingerprint of an X.509 DER encoded certificate.
Note however that the fingerprint of an OpenPGP is not just a hash and cannot be
calculated with this function.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Chapter 9: Function Reference 158

gnutls free

[Function]void gnutls_free (void * ptr)
This function will free data pointed by ptr.

The deallocation function used is the one set by gnutls_global_set_mem_

functions().

gnutls global deinit

[Function]void gnutls_global_deinit (void)
This function deinitializes the global data, that were initialized using gnutls_global_
init().

Note! This function is not thread safe. See the discussion for gnutls_global_init()
for more information.

gnutls global init

[Function]int gnutls_global_init (void)
This function initializes the global data to defaults. Every gnutls application has a
global data which holds common parameters shared by gnutls session structures. You
should call gnutls_global_deinit() when gnutls usage is no longer needed

Note that this function will also initialize the underlying crypto backend, if it has not
been initialized before.

This function increment a global counter, so that gnutls_global_deinit() only
releases resources when it has been called as many times as gnutls_global_init().
This is useful when GnuTLS is used by more than one library in an application. This
function can be called many times, but will only do something the first time.

Note! This function is not thread safe. If two threads call this function simultaneously,
they can cause a race between checking the global counter and incrementing it, causing
both threads to execute the library initialization code. That would lead to a memory
leak. To handle this, your application could invoke this function after aquiring a
thread mutex. To ignore the potential memory leak is also an option.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls global set log function

[Function]void gnutls_global_set_log_function (gnutls log func log_func)
log func: it’s a log function

This is the function where you set the logging function gnutls is going to use. This
function only accepts a character array. Normally you may not use this function since
it is only used for debugging purposes.

gnutls log func is of the form, void (*gnutls log func)(int level, const char*);

Chapter 9: Function Reference 159

gnutls global set log level

[Function]void gnutls_global_set_log_level (int level)
level: it’s an integer from 0 to 9.

This is the function that allows you to set the log level. The level is an integer between
0 and 9. Higher values mean more verbosity. The default value is 0. Larger values
should only be used with care, since they may reveal sensitive information.

Use a log level over 10 to enable all debugging options.

gnutls global set mem functions

[Function]void gnutls_global_set_mem_functions (gnutls alloc function
alloc_func , gnutls alloc function secure_alloc_func ,
gnutls is secure function is_secure_func , gnutls realloc function
realloc_func , gnutls free function free_func)

alloc func: it’s the default memory allocation function. Like malloc().

secure alloc func: This is the memory allocation function that will be used for sensi-
tive data.

is secure func: a function that returns 0 if the memory given is not secure. May be
NULL.

realloc func: A realloc function

free func: The function that frees allocated data. Must accept a NULL pointer.

This is the function were you set the memory allocation functions gnutls is going
to use. By default the libc’s allocation functions (malloc(), free()), are used by
gnutls, to allocate both sensitive and not sensitive data. This function is provided to
set the memory allocation functions to something other than the defaults

This function must be called before gnutls_global_init() is called. This function
is not thread safe.

gnutls global set mutex

[Function]void gnutls_global_set_mutex (mutex init func init ,
mutex deinit func deinit , mutex lock func lock , mutex unlock func
unlock)

init: mutex initialization function

deinit: mutex deinitialization function

lock: mutex locking function

unlock: mutex unlocking function

With this function you are allowed to override the default mutex locks used in some
parts of gnutls and dependent libraries. This function should be used if you have
complete control of your program and libraries. Do not call this function from a
library. Instead only initialize gnutls and the default OS mutex locks will be used.

This function must be called before gnutls_global_init().

Chapter 9: Function Reference 160

gnutls handshake get last in

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_in (gnutls session t session)

session: is a gnutls_session_t structure.

This function is only useful to check where the last performed handshake failed. If
the previous handshake succeed or was not performed at all then no meaningful value
will be returned.

Check gnutls_handshake_description_t in gnutls.h for the available handshake
descriptions.

Returns: the last handshake message type received, a gnutls_handshake_

description_t.

gnutls handshake get last out

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_out (gnutls session t session)

session: is a gnutls_session_t structure.

This function is only useful to check where the last performed handshake failed. If
the previous handshake succeed or was not performed at all then no meaningful value
will be returned.

Check gnutls_handshake_description_t in gnutls.h for the available handshake
descriptions.

Returns: the last handshake message type sent, a gnutls_handshake_description_

t.

gnutls handshake set max packet length

[Function]void gnutls_handshake_set_max_packet_length (gnutls session t
session , size t max)

session: is a gnutls_session_t structure.

max: is the maximum number.

This function will set the maximum size of all handshake messages. Handshakes over
this size are rejected with GNUTLS_E_HANDSHAKE_TOO_LARGE error code. The default
value is 48kb which is typically large enough. Set this to 0 if you do not want to set
an upper limit.

The reason for restricting the handshake message sizes are to limit Denial of Service
attacks.

gnutls handshake set post client hello function

[Function]void gnutls_handshake_set_post_client_hello_function
(gnutls session t session , gnutls handshake post client hello func func)

session: is a gnutls_session_t structure.

func: is the function to be called

Chapter 9: Function Reference 161

This function will set a callback to be called after the client hello has been received
(callback valid in server side only). This allows the server to adjust settings based on
received extensions.

Those settings could be ciphersuites, requesting certificate, or anything else except
for version negotiation (this is done before the hello message is parsed).

This callback must return 0 on success or a gnutls error code to terminate the hand-
shake.

Warning: You should not use this function to terminate the handshake based on client
input unless you know what you are doing. Before the handshake is finished there is
no way to know if there is a man-in-the-middle attack being performed.

gnutls handshake set private extensions

[Function]void gnutls_handshake_set_private_extensions (gnutls session t
session , int allow)

session: is a gnutls_session_t structure.

allow : is an integer (0 or 1)

This function will enable or disable the use of private cipher suites (the ones that start
with 0xFF). By default or if allow is 0 then these cipher suites will not be advertized
nor used.

Unless this function is called with the option to allow (1), then no compression algo-
rithms, like LZO. That is because these algorithms are not yet defined in any RFC
or even internet draft.

Enabling the private ciphersuites when talking to other than gnutls servers and clients
may cause interoperability problems.

gnutls handshake

[Function]int gnutls_handshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function does the handshake of the TLS/SSL protocol, and initializes the TLS
connection.

This function will fail if any problem is encountered, and will return a negative error
code. In case of a client, if the client has asked to resume a session, but the server
couldn’t, then a full handshake will be performed.

The non-fatal errors such as GNUTLS_E_AGAIN and GNUTLS_E_INTERRUPTED interrupt
the handshake procedure, which should be later be resumed. Call this function again,
until it returns 0; cf. gnutls_record_get_direction() and gnutls_error_is_

fatal().

If this function is called by a server after a rehandshake request then GNUTLS_E_GOT_

APPLICATION_DATA or GNUTLS_E_WARNING_ALERT_RECEIVED may be returned. Note
that these are non fatal errors, only in the specific case of a rehandshake. Their
meaning is that the client rejected the rehandshake request or in the case of GNUTLS_
E_GOT_APPLICATION_DATA it might also mean that some data were pending.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Chapter 9: Function Reference 162

gnutls hash deinit

[Function]void gnutls_hash_deinit (gnutls hash hd t handle , void * digest)
handle: is a gnutls_hash_hd_t structure.

digest: is the output value of the hash

This function will deinitialize all resources occupied by the given hash context.

Since: 2.10.0

gnutls hash fast

[Function]int gnutls_hash_fast (gnutls digest algorithm t algorithm , const
void * text , size t textlen , void * digest)

algorithm: the hash algorithm to use

text: the data to hash

textlen: The length of data to hash

digest: is the output value of the hash

This convenience function will hash the given data and return output on a single call.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls hash get len

[Function]int gnutls_hash_get_len (gnutls digest algorithm t algorithm)
algorithm: the hash algorithm to use

This function will return the length of the output data of the given hash algorithm.

Returns: The length or zero on error.

Since: 2.10.0

gnutls hash init

[Function]int gnutls_hash_init (gnutls hash hd t * dig ,
gnutls digest algorithm t algorithm)

dig : is a gnutls_hash_hd_t structure.

algorithm: the hash algorithm to use

This function will initialize an context that can be used to produce a Message Digest
of data. This will effectively use the current crypto backend in use by gnutls or the
cryptographic accelerator in use.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls hash output

[Function]void gnutls_hash_output (gnutls hash hd t handle , void * digest)
handle: is a gnutls_hash_hd_t structure.

digest: is the output value of the hash

This function will output the current hash value.

Since: 2.10.0

Chapter 9: Function Reference 163

gnutls hash

[Function]int gnutls_hash (gnutls hash hd t handle , const void * text , size t
textlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to hash

textlen: The length of data to hash

This function will hash the given data using the algorithm specified by the context.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls hex2bin

[Function]int gnutls_hex2bin (const char * hex_data , size t hex_size , char *
bin_data , size t * bin_size)

hex data: string with data in hex format

hex size: size of hex data

bin data: output array with binary data

bin size: when calling *bin_size should hold size of bin_data, on return will hold
actual size of bin_data.

Convert a buffer with hex data to binary data.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.4.0

gnutls hex decode

[Function]int gnutls_hex_decode (const gnutls datum t * hex_data , char *
result , size t * result_size)

hex data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data, using the hex encoding used by
PSK password files.

Note that hex data should be null terminated.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

gnutls hex encode

[Function]int gnutls_hex_encode (const gnutls datum t * data , char * result ,
size t * result_size)

data: contain the raw data

result: the place where hex data will be copied

result size: holds the size of the result

Chapter 9: Function Reference 164

This function will convert the given data to printable data, using the hex encoding,
as used in the PSK password files.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

gnutls hmac deinit

[Function]void gnutls_hmac_deinit (gnutls hmac hd t handle , void * digest)
handle: is a gnutls_hmac_hd_t structure.

digest: is the output value of the MAC

This function will deinitialize all resources occupied by the given hmac context.

Since: 2.10.0

gnutls hmac fast

[Function]int gnutls_hmac_fast (gnutls mac algorithm t algorithm , const void
* key , size t keylen , const void * text , size t textlen , void * digest)

algorithm: the hash algorithm to use

key : the key to use

keylen: The length of the key

text: the data to hash

textlen: The length of data to hash

digest: is the output value of the hash

This convenience function will hash the given data and return output on a single call.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls hmac get len

[Function]int gnutls_hmac_get_len (gnutls mac algorithm t algorithm)
algorithm: the hmac algorithm to use

This function will return the length of the output data of the given hmac algorithm.

Returns: The length or zero on error.

Since: 2.10.0

gnutls hmac init

[Function]int gnutls_hmac_init (gnutls hmac hd t * dig ,
gnutls digest algorithm t algorithm , const void * key , size t keylen)

dig : is a gnutls_hmac_hd_t structure.

algorithm: the HMAC algorithm to use

key : The key to be used for encryption

keylen: The length of the key

Chapter 9: Function Reference 165

This function will initialize an context that can be used to produce a Message Au-
thentication Code (MAC) of data. This will effectively use the current crypto backend
in use by gnutls or the cryptographic accelerator in use.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls hmac output

[Function]void gnutls_hmac_output (gnutls hmac hd t handle , void * digest)
handle: is a gnutls_hmac_hd_t structure.

digest: is the output value of the MAC

This function will output the current MAC value.

Since: 2.10.0

gnutls hmac

[Function]int gnutls_hmac (gnutls hmac hd t handle , const void * text , size t
textlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to hash

textlen: The length of data to hash

This function will hash the given data using the algorithm specified by the context.

Returns: Zero or a negative value on error.

Since: 2.10.0

gnutls init

[Function]int gnutls_init (gnutls session t * session , gnutls connection end t
con_end)

session: is a pointer to a gnutls_session_t structure.

con end: indicate if this session is to be used for server or client.

This function initializes the current session to null. Every session must be initialized
before use, so internal structures can be allocated. This function allocates structures
which can only be free’d by calling gnutls_deinit(). Returns zero on success.

con_end can be one of GNUTLS_CLIENT and GNUTLS_SERVER.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls kx get id

[Function]gnutls_kx_algorithm_t gnutls_kx_get_id (const char * name)
name: is a KX name

Convert a string to a gnutls_kx_algorithm_t value. The names are compared in a
case insensitive way.

Returns: an id of the specified KX algorithm, or GNUTLS_KX_UNKNOWN on error.

Chapter 9: Function Reference 166

gnutls kx get name

[Function]const char * gnutls_kx_get_name (gnutls kx algorithm t
algorithm)

algorithm: is a key exchange algorithm

Convert a gnutls_kx_algorithm_t value to a string.

Returns: a pointer to a string that contains the name of the specified key exchange
algorithm, or NULL.

gnutls kx get

[Function]gnutls_kx_algorithm_t gnutls_kx_get (gnutls session t session)
session: is a gnutls_session_t structure.

Get currently used key exchange algorithm.

Returns: the key exchange algorithm used in the last handshake, a gnutls_kx_

algorithm_t value.

gnutls kx list

[Function]const gnutls_kx_algorithm_t * gnutls_kx_list (void)
Get a list of supported key exchange algorithms.

Returns: a zero-terminated list of gnutls_kx_algorithm_t integers indicating the
available key exchange algorithms.

gnutls kx set priority

[Function]int gnutls_kx_set_priority (gnutls session t session , const int *
list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls kx algorithm t elements.

Sets the priority on the key exchange algorithms supported by gnutls. Priority is
higher for elements specified before others. After specifying the algorithms you want,
you must append a 0. Note that the priority is set on the client. The server does not
use the algorithm’s priority except for disabling algorithms that were not specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls mac get id

[Function]gnutls_mac_algorithm_t gnutls_mac_get_id (const char * name)
name: is a MAC algorithm name

Convert a string to a gnutls_mac_algorithm_t value. The names are compared in
a case insensitive way.

Returns: a gnutls_mac_algorithm_t id of the specified MAC algorithm string, or
GNUTLS_MAC_UNKNOWN on failures.

Chapter 9: Function Reference 167

gnutls mac get key size

[Function]size_t gnutls_mac_get_key_size (gnutls mac algorithm t
algorithm)

algorithm: is an encryption algorithm

Get size of MAC key.

Returns: length (in bytes) of the given MAC key size, or 0 if the given MAC algorithm
is invalid.

gnutls mac get name

[Function]const char * gnutls_mac_get_name (gnutls mac algorithm t
algorithm)

algorithm: is a MAC algorithm

Convert a gnutls_mac_algorithm_t value to a string.

Returns: a string that contains the name of the specified MAC algorithm, or NULL.

gnutls mac get

[Function]gnutls_mac_algorithm_t gnutls_mac_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Get currently used MAC algorithm.

Returns: the currently used mac algorithm, a gnutls_mac_algorithm_t value.

gnutls mac list

[Function]const gnutls_mac_algorithm_t * gnutls_mac_list (void)
Get a list of hash algorithms for use as MACs. Note that not necessarily all MACs are
supported in TLS cipher suites. For example, MD2 is not supported as a cipher suite,
but is supported for other purposes (e.g., X.509 signature verification or similar).

Returns: Return a zero-terminated list of gnutls_mac_algorithm_t integers indi-
cating the available MACs.

gnutls mac set priority

[Function]int gnutls_mac_set_priority (gnutls session t session , const int *
list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls mac algorithm t elements.

Sets the priority on the mac algorithms supported by gnutls. Priority is higher for
elements specified before others. After specifying the algorithms you want, you must
append a 0. Note that the priority is set on the client. The server does not use the
algorithm’s priority except for disabling algorithms that were not specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Chapter 9: Function Reference 168

gnutls malloc

[Function]void * gnutls_malloc (size t s)
This function will allocate ’s’ bytes data, and return a pointer to memory. This
function is supposed to be used by callbacks.

The allocation function used is the one set by gnutls_global_set_mem_functions().

gnutls openpgp send cert

[Function]void gnutls_openpgp_send_cert (gnutls session t session ,
gnutls openpgp crt status t status)

session: is a pointer to a gnutls_session_t structure.

status: is one of GNUTLS OPENPGP CERT, or GNUTLS OPENPGP CERT FINGERPRINT

This function will order gnutls to send the key fingerprint instead of the key in the
initial handshake procedure. This should be used with care and only when there is
indication or knowledge that the server can obtain the client’s key.

gnutls pem base64 decode alloc

[Function]int gnutls_pem_base64_decode_alloc (const char * header , const
gnutls datum t * b64_data , gnutls datum t * result)

header: The PEM header (eg. CERTIFICATE)

b64 data: contains the encoded data

result: the place where decoded data lie

This function will decode the given encoded data. The decoded data will be allocated,
and stored into result. If the header given is non null this function will search for
"—–BEGIN header" and decode only this part. Otherwise it will decode the first
PEM packet found.

You should use gnutls_free() to free the returned data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls pem base64 decode

[Function]int gnutls_pem_base64_decode (const char * header , const
gnutls datum t * b64_data , unsigned char * result , size t * result_size)

header: A null terminated string with the PEM header (eg. CERTIFICATE)

b64 data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data. If the header given is non null this
function will search for "—–BEGIN header" and decode only this part. Otherwise it
will decode the first PEM packet found.

Returns: On success GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_SHORT_MEMORY_
BUFFER is returned if the buffer given is not long enough, or 0 on success.

Chapter 9: Function Reference 169

gnutls pem base64 encode alloc

[Function]int gnutls_pem_base64_encode_alloc (const char * msg , const
gnutls datum t * data , gnutls datum t * result)

msg : is a message to be put in the encoded header

data: contains the raw data

result: will hold the newly allocated encoded data

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages. This function will allocate the required
memory to hold the encoded data.

You should use gnutls_free() to free the returned data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls pem base64 encode

[Function]int gnutls_pem_base64_encode (const char * msg , const
gnutls datum t * data , char * result , size t * result_size)

msg : is a message to be put in the header

data: contain the raw data

result: the place where base64 data will be copied

result size: holds the size of the result

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages.

The output string will be null terminated, although the size will not include the
terminating null.

Returns: On success GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_SHORT_MEMORY_
BUFFER is returned if the buffer given is not long enough, or 0 on success.

gnutls perror

[Function]void gnutls_perror (int error)
error: is a GnuTLS error code, a negative value

This function is like perror(). The only difference is that it accepts an error number
returned by a gnutls function.

gnutls pk algorithm get name

[Function]const char * gnutls_pk_algorithm_get_name
(gnutls pk algorithm t algorithm)

algorithm: is a pk algorithm

Convert a gnutls_pk_algorithm_t value to a string.

Returns: a string that contains the name of the specified public key algorithm, or
NULL.

Chapter 9: Function Reference 170

gnutls pk bits to sec param

[Function]gnutls_sec_param_t gnutls_pk_bits_to_sec_param
(gnutls pk algorithm t algo , unsigned int bits)

algo: is a public key algorithm

bits: is the number of bits

This is the inverse of gnutls_sec_param_to_pk_bits(). Given an algorithm and
the number of bits, it will return the security parameter. This is a rough indication.

Returns: The security parameter.

gnutls pk get id

[Function]gnutls_pk_algorithm_t gnutls_pk_get_id (const char * name)
name: is a string containing a public key algorithm name.

Convert a string to a gnutls_pk_algorithm_t value. The names are compared in a
case insensitive way. For example, gnutls pk get id("RSA") will return GNUTLS_PK_

RSA.

Returns: a gnutls_pk_algorithm_t id of the specified public key algorithm string,
or GNUTLS_PK_UNKNOWN on failures.

Since: 2.6.0

gnutls pk get name

[Function]const char * gnutls_pk_get_name (gnutls pk algorithm t
algorithm)

algorithm: is a public key algorithm

Convert a gnutls_pk_algorithm_t value to a string.

Returns: a pointer to a string that contains the name of the specified public key
algorithm, or NULL.

Since: 2.6.0

gnutls pk list

[Function]const gnutls_pk_algorithm_t * gnutls_pk_list (void)
Get a list of supported public key algorithms.

Returns: a zero-terminated list of gnutls_pk_algorithm_t integers indicating the
available ciphers.

Since: 2.6.0

gnutls pkcs11 add provider

[Function]int gnutls_pkcs11_add_provider (const char * name , const char *
params)

name: The filename of the module

params: should be NULL

Chapter 9: Function Reference 171

This function will load and add a PKCS 11 module to the module list used in gnutls.
After this function is called the module will be used for PKCS 11 operations.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 copy secret key

[Function]int gnutls_pkcs11_copy_secret_key (const char * token_url ,
gnutls datum t * key , const char * label , unsigned int key_usage , unsigned
int flags)

token url: A PKCS 11 URL specifying a token

key : The raw key

label: A name to be used for the stored data

key usage: One of GNUTLS KEY *

flags: One of GNUTLS PKCS11 OBJ FLAG *

This function will copy a raw secret (symmetric) key into a PKCS 11 token specified
by a URL. The key can be marked as sensitive or not.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 copy x509 crt

[Function]int gnutls_pkcs11_copy_x509_crt (const char * token_url ,
gnutls x509 crt t crt , const char * label , unsigned int flags)

token url: A PKCS 11 URL specifying a token

crt: A certificate

label: A name to be used for the stored data

flags: One of GNUTLS PKCS11 OBJ FLAG *

This function will copy a certificate into a PKCS 11 token specified by a URL. The
certificate can be marked as trusted or not.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 copy x509 privkey

[Function]int gnutls_pkcs11_copy_x509_privkey (const char * token_url ,
gnutls x509 privkey t key , const char * label , unsigned int key_usage ,
unsigned int flags)

token url: A PKCS 11 URL specifying a token

key : A private key

label: A name to be used for the stored data

key usage: One of GNUTLS KEY *

flags: One of GNUTLS PKCS11 OBJ * flags

This function will copy a private key into a PKCS 11 token specified by a URL. It
is highly recommended flags to contain GNUTLS_PKCS11_OBJ_FLAG_MARK_SENSITIVE

unless there is a strong reason not to.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 172

gnutls pkcs11 deinit

[Function]void gnutls_pkcs11_deinit (void)
This function will deinitialize the PKCS 11 subsystem in gnutls.

gnutls pkcs11 delete url

[Function]int gnutls_pkcs11_delete_url (const char * object_url , unsigned
int flags)

object url: The URL of the object to delete.

flags: One of GNUTLS PKCS11 OBJ * flags

This function will delete objects matching the given URL.

Returns: On success, the number of objects deleted is returned, otherwise a negative
error value.

gnutls pkcs11 init

[Function]int gnutls_pkcs11_init (unsigned int flags , const char *
configfile)

flags: GNUTLS PKCS11 FLAG MANUAL or GNUTLS PKCS11 FLAG AUTO

configfile: either NULL or the location of a configuration file

This function will initialize the PKCS 11 subsystem in gnutls. It will read a config-
uration file if GNUTLS_PKCS11_FLAG_AUTO is used or allow you to independently load
PKCS 11 modules using gnutls_pkcs11_add_provider() if GNUTLS_PKCS11_FLAG_
MANUAL is specified.

Normally you don’t need to call this function since it is being called by gnutls_

global_init(). Otherwise you must call it before it.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 obj deinit

[Function]void gnutls_pkcs11_obj_deinit (gnutls pkcs11 obj t obj)
obj: The structure to be initialized

This function will deinitialize a certificate structure.

gnutls pkcs11 obj export url

[Function]int gnutls_pkcs11_obj_export_url (gnutls pkcs11 obj t obj ,
gnutls pkcs11 url type t detailed , char ** url)

obj: Holds the PKCS 11 certificate

detailed: non zero if a detailed URL is required

url: will contain an allocated url

This function will export a URL identifying the given certificate.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 173

gnutls pkcs11 obj export

[Function]int gnutls_pkcs11_obj_export (gnutls pkcs11 obj t obj , void *
output_data , size t * output_data_size)

obj: Holds the object

output data: will contain a certificate PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the pkcs11 object data. It is normal for PKCS 11 data to
be inaccesible and in that case GNUTLS_E_INVALID_REQUEST will be returned.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls pkcs11 obj get info

[Function]int gnutls_pkcs11_obj_get_info (gnutls pkcs11 obj t crt ,
gnutls pkcs11 obj info t itype , void * output , size t * output_size)

crt: should contain a gnutls_pkcs11_obj_t structure

itype: Denotes the type of information requested

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS 11 certificatesuch as the label,
id as well as token information where the key is stored. When output is text it returns
null terminated string although output_size contains the size of the actual data only.

Returns: zero on success or a negative value on error.

gnutls pkcs11 obj get type

[Function]gnutls_pkcs11_obj_type_t gnutls_pkcs11_obj_get_type
(gnutls pkcs11 obj t obj)

This function will return the type of the certificate being stored in the structure.

Returns: The type of the certificate.

gnutls pkcs11 obj import url

[Function]int gnutls_pkcs11_obj_import_url (gnutls pkcs11 obj t cert ,
const char * url , unsigned int flags)

cert: The structure to store the parsed certificate

url: a PKCS 11 url identifying the key

flags: One of GNUTLS PKCS11 OBJ * flags

This function will "import" a PKCS 11 URL identifying a certificate key to the
gnutls_pkcs11_obj_t structure. This does not involve any parsing (such as X.509

Chapter 9: Function Reference 174

or OpenPGP) since the gnutls_pkcs11_obj_t is format agnostic. Only data are
transferred.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 obj init

[Function]int gnutls_pkcs11_obj_init (gnutls pkcs11 obj t * obj)
obj: The structure to be initialized

This function will initialize a pkcs11 certificate structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 obj list import url

[Function]int gnutls_pkcs11_obj_list_import_url (gnutls pkcs11 obj t *
p_list , unsigned int * n_list , const char * url , gnutls pkcs11 obj attr t
attrs , unsigned int flags)

p list: An uninitialized object list (may be NULL)

n list: initially should hold the maximum size of the list. Will contain the actual size.

url: A PKCS 11 url identifying a set of objects

attrs: Attributes of type gnutls_pkcs11_obj_attr_t that can be used to limit out-
put

flags: One of GNUTLS PKCS11 OBJ * flags

This function will initialize and set values to an object list by using all objects iden-
tified by a PKCS 11 URL.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 privkey deinit

[Function]void gnutls_pkcs11_privkey_deinit (gnutls pkcs11 privkey t key)
key : The structure to be initialized

This function will deinitialize a private key structure.

gnutls pkcs11 privkey export url

[Function]int gnutls_pkcs11_privkey_export_url (gnutls pkcs11 privkey t
key , gnutls pkcs11 url type t detailed , char ** url)

key : Holds the PKCS 11 key

detailed: non zero if a detailed URL is required

url: will contain an allocated url

This function will export a URL identifying the given key.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 175

gnutls pkcs11 privkey get info

[Function]int gnutls_pkcs11_privkey_get_info (gnutls pkcs11 privkey t
pkey , gnutls pkcs11 obj info t itype , void * output , size t * output_size)

pkey : should contain a gnutls_pkcs11_privkey_t structure

itype: Denotes the type of information requested

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS 11 private key such as the
label, id as well as token information where the key is stored. When output is text it
returns null terminated string although output_size contains the size of the actual
data only.

Returns: zero on success or a negative value on error.

gnutls pkcs11 privkey get pk algorithm

[Function]int gnutls_pkcs11_privkey_get_pk_algorithm
(gnutls pkcs11 privkey t key , unsigned int * bits)

key : should contain a gnutls_pkcs11_privkey_t structure

This function will return the public key algorithm of a private key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative value on error.

gnutls pkcs11 privkey import url

[Function]int gnutls_pkcs11_privkey_import_url (gnutls pkcs11 privkey t
pkey , const char * url , unsigned int flags)

pkey : The structure to store the parsed key

url: a PKCS 11 url identifying the key

flags: sequence of GNUTLS PKCS PRIVKEY *

This function will "import" a PKCS 11 URL identifying a private key to the gnutls_
pkcs11_privkey_t structure. In reality since in most cases keys cannot be exported,
the private key structure is being associated with the available operations on the
token.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 privkey init

[Function]int gnutls_pkcs11_privkey_init (gnutls pkcs11 privkey t * key)
key : The structure to be initialized

This function will initialize an private key structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 176

gnutls pkcs11 set pin function

[Function]void gnutls_pkcs11_set_pin_function
(gnutls pkcs11 pin callback t fn , void * userdata)

fn: The PIN callback

userdata: data to be supplied to callback

This function will set a callback function to be used when a PIN is required for PKCS
11 operations.

Callback for PKCS11 PIN entry. The callback provides the PIN code to unlock the
token with label ’token label’, specified by the URL ’token url’.

The PIN code, as a NUL-terminated ASCII string, should be copied into the ’pin’
buffer (of maximum size pin max), and return 0 to indicate success. Alternatively,
the callback may return a negative gnutls error code to indicate failure and cancel
PIN entry (in which case, the contents of the ’pin’ parameter are ignored).

When a PIN is required, the callback will be invoked repeatedly (and indefinitely)
until either the returned PIN code is correct, the callback returns failure, or the token
refuses login (e.g. when the token is locked due to too many incorrect PINs!). For
the first such invocation, the ’attempt’ counter will have value zero; it will increase
by one for each subsequent attempt.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 set token function

[Function]void gnutls_pkcs11_set_token_function
(gnutls pkcs11 token callback t fn , void * userdata)

fn: The token callback

userdata: data to be supplied to callback

This function will set a callback function to be used when a token needs to be inserted
to continue PKCS 11 operations.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs11 token get flags

[Function]int gnutls_pkcs11_token_get_flags (const char * url , unsigned int
* flags)

url: should contain a PKCS 11 URL

flags: The output flags (GNUTLS PKCS11 TOKEN *)

This function will return information about the PKCS 11 token flags.

Returns: zero on success or a negative value on error.

gnutls pkcs11 token get info

[Function]int gnutls_pkcs11_token_get_info (const char * url ,
gnutls pkcs11 token info t ttype , void * output , size t * output_size)

url: should contain a PKCS 11 URL

Chapter 9: Function Reference 177

ttype: Denotes the type of information requested

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS 11 token such as the label, id
as well as token information where the key is stored.

Returns: zero on success or a negative value on error.

gnutls pkcs11 token get mechanism

[Function]int gnutls_pkcs11_token_get_mechanism (const char * url , int
idx , unsigned long * mechanism)

url: should contain a PKCS 11 URL

idx: The index of the mechanism

mechanism: The PKCS 11 mechanism ID

This function will return the names of the supported mechanisms by
the token. It should be called with an increasing index until it return
GNUTLS E REQUESTED DATA NOT AVAILABLE.

Returns: zero on success or a negative value on error.

gnutls pkcs11 token get url

[Function]int gnutls_pkcs11_token_get_url (unsigned int seq ,
gnutls pkcs11 url type t detailed , char ** url)

seq: sequence number starting from 0

detailed: non zero if a detailed URL is required

url: will contain an allocated url

This function will return the URL for each token available in system. The url has to
be released using gnutls_free()

Returns: On success, GNUTLS_E_SUCCESS is returned, GNUTLS_E_REQUESTED_DATA_
NOT_AVAILABLE if the sequence number exceeds the available tokens, otherwise a
negative error value.

gnutls pkcs11 token init

[Function]int gnutls_pkcs11_token_init (const char * token_url , const char
* so_pin , const char * label)

token url: A PKCS 11 URL specifying a token

so pin: Security Officer’s PIN

label: A name to be used for the token

This function will initialize (format) a token. If the token is at a factory defaults
state the security officer’s PIN given will be set to be the default. Otherwise it should
match the officer’s PIN.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 178

gnutls pkcs11 token set pin

[Function]int gnutls_pkcs11_token_set_pin (const char * token_url , const
char * oldpin , const char * newpin , unsigned int flags)

token url: A PKCS 11 URL specifying a token

oldpin: old user’s PIN

newpin: new user’s PIN

flags: one of gnutls pkcs11 pin flag t

This function will modify or set a user’s PIN for the given token. If it is called to set
a user pin for first time the oldpin must be NULL.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls prf raw

[Function]int gnutls_prf_raw (gnutls session t session , size t label_size ,
const char * label , size t seed_size , const char * seed , size t outsize ,
char * out)

session: is a gnutls_session_t structure.

label size: length of the label variable.

label: label used in PRF computation, typically a short string.

seed size: length of the seed variable.

seed: optional extra data to seed the PRF with.

outsize: size of pre-allocated output buffer to hold the output.

out: pre-allocate buffer to hold the generated data.

Apply the TLS Pseudo-Random-Function (PRF) using the master secret on some
data.

The label variable usually contain a string denoting the purpose for the generated
data. The seed usually contain data such as the client and server random, perhaps
together with some additional data that is added to guarantee uniqueness of the
output for a particular purpose.

Because the output is not guaranteed to be unique for a particular session unless seed
include the client random and server random fields (the PRF would output the same
data on another connection resumed from the first one), it is not recommended to
use this function directly. The gnutls_prf() function seed the PRF with the client
and server random fields directly, and is recommended if you want to generate pseudo
random data unique for each session.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls prf

[Function]int gnutls_prf (gnutls session t session , size t label_size , const
char * label , int server_random_first , size t extra_size , const char *
extra , size t outsize , char * out)

session: is a gnutls_session_t structure.

Chapter 9: Function Reference 179

label size: length of the label variable.

label: label used in PRF computation, typically a short string.

server random first: non-0 if server random field should be first in seed

extra size: length of the extra variable.

extra: optional extra data to seed the PRF with.

outsize: size of pre-allocated output buffer to hold the output.

out: pre-allocate buffer to hold the generated data.

Apply the TLS Pseudo-Random-Function (PRF) using the master secret on some
data, seeded with the client and server random fields.

The label variable usually contain a string denoting the purpose for the generated
data. The server_random_first indicate whether the client random field or the
server random field should be first in the seed. Non-0 indicate that the server random
field is first, 0 that the client random field is first.

The extra variable can be used to add more data to the seed, after the random
variables. It can be used to tie make sure the generated output is strongly connected
to some additional data (e.g., a string used in user authentication).

The output is placed in *OUT, which must be pre-allocated.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls priority deinit

[Function]void gnutls_priority_deinit (gnutls priority t priority_cache)
priority cache: is a gnutls_prioritity_t structure.

Deinitializes the priority cache.

gnutls priority init

[Function]int gnutls_priority_init (gnutls priority t * priority_cache ,
const char * priorities , const char ** err_pos)

priority cache: is a gnutls_prioritity_t structure.

priorities: is a string describing priorities

err pos: In case of an error this will have the position in the string the error occured

Sets priorities for the ciphers, key exchange methods, macs and compression methods.

The priorities option allows you to specify a colon separated list of the cipher
priorities to enable.

Common keywords: Some keywords are defined to provide quick access to common
preferences.

"PERFORMANCE" means all the "secure" ciphersuites are enabled, limited to 128
bit ciphers and sorted by terms of speed performance.

"NORMAL" means all "secure" ciphersuites. The 256-bit ciphers are included as a
fallback only. The ciphers are sorted by security margin.

"SECURE128" means all "secure" ciphersuites with ciphers up to 128 bits, sorted by
security margin.

Chapter 9: Function Reference 180

"SECURE256" means all "secure" ciphersuites including the 256 bit ciphers, sorted
by security margin.

"EXPORT" means all ciphersuites are enabled, including the low-security 40 bit
ciphers.

"NONE" means nothing is enabled. This disables even protocols and compression
methods.

Special keywords: "!" or "-" appended with an algorithm will remove this algorithm.

"+" appended with an algorithm will add this algorithm.

Check the GnuTLS manual section "Priority strings" for detailed information.

Examples: "NONE:+VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-
ALL:+COMP-NULL"

"NORMAL:-ARCFOUR-128" means normal ciphers except for ARCFOUR-128.

"SECURE:-VERS-SSL3.0:+COMP-DEFLATE" means that only secure ciphers are
enabled, SSL3.0 is disabled, and libz compression enabled.

"NONE:+VERS-TLS-ALL:+AES-128-CBC:+RSA:+SHA1:+COMP-NULL:+SIGN-
RSA-SHA1",

"NORMAL:COMPAT" is the most compatible mode.

Returns: On syntax error GNUTLS_E_INVALID_REQUEST is returned, GNUTLS_E_

SUCCESS on success, or an error code.

gnutls priority set direct

[Function]int gnutls_priority_set_direct (gnutls session t session , const
char * priorities , const char ** err_pos)

session: is a gnutls_session_t structure.

priorities: is a string describing priorities

err pos: In case of an error this will have the position in the string the error occured

Sets the priorities to use on the ciphers, key exchange methods, macs and compression
methods. This function avoids keeping a priority cache and is used to directly set
string priorities to a TLS session. For documentation check the gnutls_priority_

init().

Returns: On syntax error GNUTLS_E_INVALID_REQUEST is returned, GNUTLS_E_

SUCCESS on success, or an error code.

gnutls priority set

[Function]int gnutls_priority_set (gnutls session t session , gnutls priority t
priority)

session: is a gnutls_session_t structure.

priority : is a gnutls_priority_t structure.

Sets the priorities to use on the ciphers, key exchange methods, macs and compression
methods.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Chapter 9: Function Reference 181

gnutls privkey decrypt data

[Function]int gnutls_privkey_decrypt_data (gnutls privkey t key , unsigned
int flags , const gnutls datum t * ciphertext , gnutls datum t *
plaintext)

key : Holds the key

flags: zero for now

ciphertext: holds the data to be decrypted

plaintext: will contain the decrypted data, allocated with gnutls_malloc()

This function will decrypt the given data using the algorithm supported by the private
key.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls privkey deinit

[Function]void gnutls_privkey_deinit (gnutls privkey t key)
key : The structure to be deinitialized

This function will deinitialize a private key structure.

gnutls privkey get pk algorithm

[Function]int gnutls_privkey_get_pk_algorithm (gnutls privkey t key ,
unsigned int * bits)

key : should contain a gnutls_privkey_t structure

bits: If set will return the number of bits of the parameters (may be NULL)

This function will return the public key algorithm of a private key and if possible will
return a number of bits that indicates the security parameter of the key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative value on error.

gnutls privkey get type

[Function]gnutls_privkey_type_t gnutls_privkey_get_type
(gnutls privkey t key)

key : should contain a gnutls_privkey_t structure

This function will return the type of the private key. This is actually the type of the
subsystem used to set this private key.

Returns: a member of the gnutls_privkey_type_t enumeration on success, or a
negative value on error.

gnutls privkey import openpgp

[Function]int gnutls_privkey_import_openpgp (gnutls privkey t pkey ,
gnutls openpgp privkey t key , unsigned int flags)

pkey : The private key

key : The private key to be imported

Chapter 9: Function Reference 182

flags: should be zero

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The gnutls_openpgp_privkey_t object must not be deallocated during the lifetime
of this structure. The subkey set as preferred will be used, or the master key otherwise.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls privkey import pkcs11

[Function]int gnutls_privkey_import_pkcs11 (gnutls privkey t pkey ,
gnutls pkcs11 privkey t key , unsigned int flags)

pkey : The private key

key : The private key to be imported

flags: should be zero

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The gnutls_pkcs11_privkey_t object must not be deallocated during the lifetime
of this structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls privkey import x509

[Function]int gnutls_privkey_import_x509 (gnutls privkey t pkey ,
gnutls x509 privkey t key , unsigned int flags)

pkey : The private key

key : The private key to be imported

flags: should be zero

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The gnutls_x509_privkey_t object must not be deallocated during the lifetime of
this structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls privkey init

[Function]int gnutls_privkey_init (gnutls privkey t * key)
key : The structure to be initialized

This function will initialize an private key structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls privkey sign data

[Function]int gnutls_privkey_sign_data (gnutls privkey t signer ,
gnutls digest algorithm t hash , unsigned int flags , const gnutls datum t *
data , gnutls datum t * signature)

signer: Holds the key

Chapter 9: Function Reference 183

hash: should be a digest algorithm

flags: should be 0 for now

data: holds the data to be signed

signature: will contain the signature allocate with gnutls_malloc()

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-1 for the
DSA keys.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.12.0

gnutls privkey sign hash

[Function]int gnutls_privkey_sign_hash (gnutls privkey t signer ,
gnutls digest algorithm t hash_algo , unsigned int flags , const
gnutls datum t * hash_data , gnutls datum t * signature)

signer: Holds the signer’s key

hash algo: The hash algorithm used

flags: zero for now

hash data: holds the data to be signed

signature: will contain newly allocated signature

This function will sign the given hashed data using a signature algorithm supported by
the private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-XXX for
the DSA keys.

Use gnutls_x509_crt_get_preferred_hash_algorithm() to determine the hash al-
gorithm.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.12.0

gnutls protocol get id

[Function]gnutls_protocol_t gnutls_protocol_get_id (const char * name)
name: is a protocol name

The names are compared in a case insensitive way.

Returns: an id of the specified protocol, or GNUTLS_VERSION_UNKNOWN on error.

gnutls protocol get name

[Function]const char * gnutls_protocol_get_name (gnutls protocol t
version)

version: is a (gnutls) version number

Convert a gnutls_protocol_t value to a string.

Returns: a string that contains the name of the specified TLS version (e.g.,
"TLS1.0"), or NULL.

Chapter 9: Function Reference 184

gnutls protocol get version

[Function]gnutls_protocol_t gnutls_protocol_get_version
(gnutls session t session)

session: is a gnutls_session_t structure.

Get TLS version, a gnutls_protocol_t value.

Returns: the version of the currently used protocol.

gnutls protocol list

[Function]const gnutls_protocol_t * gnutls_protocol_list (void)
Get a list of supported protocols, e.g. SSL 3.0, TLS 1.0 etc.

Returns: a zero-terminated list of gnutls_protocol_t integers indicating the avail-
able protocols.

gnutls protocol set priority

[Function]int gnutls_protocol_set_priority (gnutls session t session , const
int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls protocol t elements.

Sets the priority on the protocol versions supported by gnutls. This function actually
enables or disables protocols. Newer protocol versions always have highest priority.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls psk allocate client credentials

[Function]int gnutls_psk_allocate_client_credentials
(gnutls psk client credentials t * sc)

sc: is a pointer to a gnutls_psk_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls psk allocate server credentials

[Function]int gnutls_psk_allocate_server_credentials
(gnutls psk server credentials t * sc)

sc: is a pointer to a gnutls_psk_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Chapter 9: Function Reference 185

gnutls psk client get hint

[Function]const char * gnutls_psk_client_get_hint (gnutls session t
session)

session: is a gnutls session

The PSK identity hint may give the client help in deciding which username to use.
This should only be called in case of PSK authentication and in case of a client.

Returns: the identity hint of the peer, or NULL in case of an error.

Since: 2.4.0

gnutls psk free client credentials

[Function]void gnutls_psk_free_client_credentials
(gnutls psk client credentials t sc)

sc: is a gnutls_psk_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls psk free server credentials

[Function]void gnutls_psk_free_server_credentials
(gnutls psk server credentials t sc)

sc: is a gnutls_psk_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls psk netconf derive key

[Function]int gnutls_psk_netconf_derive_key (const char * password , const
char * psk_identity , const char * psk_identity_hint , gnutls datum t *
output_key)

password: zero terminated string containing password.

psk identity : zero terminated string with PSK identity.

psk identity hint: zero terminated string with PSK identity hint.

output key : output variable, contains newly allocated *data pointer.

This function will derive a PSK key from a password, for use with the Netconf pro-
tocol.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 2.4.0

Deprecated: The need for this interface was dropped from the standard on publication
as a RFC. The function works now but will return a hard failure in a future release.

Chapter 9: Function Reference 186

gnutls psk server get username

[Function]const char * gnutls_psk_server_get_username (gnutls session t
session)

session: is a gnutls session

This should only be called in case of PSK authentication and in case of a server.

Returns: the username of the peer, or NULL in case of an error.

gnutls psk set client credentials function

[Function]void gnutls_psk_set_client_credentials_function
(gnutls psk client credentials t cred , gnutls psk client credentials function *
func)

cred: is a gnutls_psk_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the username and pass-
word for client PSK authentication. The callback’s function form is: int (*call-
back)(gnutls session t, char** username, gnutls datum t* key);

The username and key->data must be allocated using gnutls_malloc(). username
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of
"stringprep".

The callback function will be called once per handshake.

The callback function should return 0 on success. -1 indicates an error.

gnutls psk set client credentials

[Function]int gnutls_psk_set_client_credentials
(gnutls psk client credentials t res , const char * username , const
gnutls datum t * key , gnutls psk key flags flags)

res: is a gnutls_psk_client_credentials_t structure.

username: is the user’s zero-terminated userid

key : is the user’s key

This function sets the username and password, in a gnutls psk client credentials t
structure. Those will be used in PSK authentication. username should be an ASCII
string or UTF-8 strings prepared using the "SASLprep" profile of "stringprep". The
key can be either in raw byte format or in Hex format (without the 0x prefix).

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls psk set params function

[Function]void gnutls_psk_set_params_function
(gnutls psk server credentials t res , gnutls params function * func)

res: is a gnutls psk server credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for PSK authentication. The callback should return zero on success.

Chapter 9: Function Reference 187

gnutls psk set server credentials file

[Function]int gnutls_psk_set_server_credentials_file
(gnutls psk server credentials t res , const char * password_file)

res: is a gnutls_psk_server_credentials_t structure.

password file: is the PSK password file (passwd.psk)

This function sets the password file, in a gnutls_psk_server_credentials_t struc-
ture. This password file holds usernames and keys and will be used for PSK authen-
tication.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls psk set server credentials function

[Function]void gnutls_psk_set_server_credentials_function
(gnutls psk server credentials t cred , gnutls psk server credentials function *
func)

cred: is a gnutls_psk_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the user’s PSK credentials. The
callback’s function form is: int (*callback)(gnutls session t, const char* username,
gnutls datum t* key);

username contains the actual username. The key must be filled in using the gnutls_
malloc().

In case the callback returned a negative number then gnutls will assume that the
username does not exist.

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

gnutls psk set server credentials hint

[Function]int gnutls_psk_set_server_credentials_hint
(gnutls psk server credentials t res , const char * hint)

res: is a gnutls_psk_server_credentials_t structure.

hint: is the PSK identity hint string

This function sets the identity hint, in a gnutls_psk_server_credentials_t struc-
ture. This hint is sent to the client to help it chose a good PSK credential (i.e.,
username and password).

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 2.4.0

gnutls psk set server dh params

[Function]void gnutls_psk_set_server_dh_params
(gnutls psk server credentials t res , gnutls dh params t dh_params)

res: is a gnutls psk server credentials t structure

Chapter 9: Function Reference 188

dh params: is a structure that holds Diffie-Hellman parameters.

This function will set the Diffie-Hellman parameters for an anonymous server to use.
These parameters will be used in Diffie-Hellman exchange with PSK cipher suites.

gnutls psk set server params function

[Function]void gnutls_psk_set_server_params_function
(gnutls psk server credentials t res , gnutls params function * func)

res: is a gnutls_certificate_credentials_t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman
parameters for PSK authentication. The callback should return zero on success.

gnutls pubkey deinit

[Function]void gnutls_pubkey_deinit (gnutls pubkey t key)
key : The structure to be deinitialized

This function will deinitialize a public key structure.

gnutls pubkey export

[Function]int gnutls_pubkey_export (gnutls pubkey t key ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

key : Holds the certificate

format: the format of output params. One of PEM or DER.

output data: will contain a certificate PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the certificate to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls pubkey get key id

[Function]int gnutls_pubkey_get_key_id (gnutls pubkey t key , unsigned int
flags , unsigned char * output_data , size t * output_data_size)

key : Holds the public key

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given public key.

Chapter 9: Function Reference 189

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls pubkey get key usage

[Function]int gnutls_pubkey_get_key_usage (gnutls pubkey t key , unsigned
int * usage)

key : should contain a gnutls_pubkey_t structure

usage: If set will return the number of bits of the parameters (may be NULL)

This function will return the key usage of the public key.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pubkey get pk algorithm

[Function]int gnutls_pubkey_get_pk_algorithm (gnutls pubkey t key ,
unsigned int * bits)

key : should contain a gnutls_pubkey_t structure

bits: If set will return the number of bits of the parameters (may be NULL)

This function will return the public key algorithm of a public key and if possible will
return a number of bits that indicates the security parameter of the key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative value on error.

gnutls pubkey get pk dsa raw

[Function]int gnutls_pubkey_get_pk_dsa_raw (gnutls pubkey t key ,
gnutls datum t * p , gnutls datum t * q , gnutls datum t * g , gnutls datum t
* y)

key : Holds the public key

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

gnutls pubkey get pk rsa raw

[Function]int gnutls_pubkey_get_pk_rsa_raw (gnutls pubkey t key ,
gnutls datum t * m , gnutls datum t * e)

key : Holds the certificate

Chapter 9: Function Reference 190

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

gnutls pubkey get preferred hash algorithm

[Function]int gnutls_pubkey_get_preferred_hash_algorithm
(gnutls pubkey t key , gnutls digest algorithm t * hash , unsigned int * mand)

key : Holds the certificate

hash: The result of the call with the hash algorithm used for signature

mand: If non zero it means that the algorithm MUST use this hash. May be NULL.

This function will read the certifcate and return the appropriate digest algorithm to
use for signing with this certificate. Some certificates (i.e. DSA might not be able to
sign without the preferred algorithm).

Returns: the 0 if the hash algorithm is found. A negative value is returned on error.

Since: 2.11.0

gnutls pubkey get verify algorithm

[Function]int gnutls_pubkey_get_verify_algorithm (gnutls pubkey t key ,
const gnutls datum t * signature , gnutls digest algorithm t * hash)

key : Holds the certificate

signature: contains the signature

hash: The result of the call with the hash algorithm used for signature

This function will read the certifcate and the signed data to determine the hash
algorithm used to generate the signature.

Returns: the 0 if the hash algorithm is found. A negative value is returned on error.

gnutls pubkey import dsa raw

[Function]int gnutls_pubkey_import_dsa_raw (gnutls pubkey t key , const
gnutls datum t * p , const gnutls datum t * q , const gnutls datum t * g , const
gnutls datum t * y)

key : The structure to store the parsed key

p: holds the p

q: holds the q

g : holds the g

y : holds the y

This function will convert the given DSA raw parameters to the native gnutls_

pubkey_t format. The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 191

gnutls pubkey import openpgp

[Function]int gnutls_pubkey_import_openpgp (gnutls pubkey t key ,
gnutls openpgp crt t crt , unsigned int flags)

key : The public key

crt: The certificate to be imported

flags: should be zero

This function will import the given public key to the abstract gnutls_pubkey_t

structure. The subkey set as preferred will be imported or the master key otherwise.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pubkey import pkcs11 url

[Function]int gnutls_pubkey_import_pkcs11_url (gnutls pubkey t key , const
char * url , unsigned int flags)

key : A key of type gnutls_pubkey_t

url: A PKCS 11 url

flags: One of GNUTLS PKCS11 OBJ * flags

This function will import a PKCS 11 certificate to a gnutls_pubkey_t structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pubkey import pkcs11

[Function]int gnutls_pubkey_import_pkcs11 (gnutls pubkey t key ,
gnutls pkcs11 obj t obj , unsigned int flags)

key : The public key

obj: The parameters to be imported

flags: should be zero

This function will import the given public key to the abstract gnutls_pubkey_t

structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pubkey import privkey

[Function]int gnutls_pubkey_import_privkey (gnutls pubkey t key ,
gnutls privkey t pkey , unsigned int usage , unsigned int flags)

key : The public key

pkey : The private key

usage: GNUTLS KEY * key usage flags.

flags: should be zero

This function will import the given public key to the abstract gnutls_pubkey_t

structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.12.0

Chapter 9: Function Reference 192

gnutls pubkey import rsa raw

[Function]int gnutls_pubkey_import_rsa_raw (gnutls pubkey t key , const
gnutls datum t * m , const gnutls datum t * e)

key : Is a structure will hold the parameters

m: holds the modulus

e: holds the public exponent

This function will replace the parameters in the given structure. The new parameters
should be stored in the appropriate gnutls datum.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls pubkey import x509

[Function]int gnutls_pubkey_import_x509 (gnutls pubkey t key ,
gnutls x509 crt t crt , unsigned int flags)

key : The public key

crt: The certificate to be imported

flags: should be zero

This function will import the given public key to the abstract gnutls_pubkey_t

structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pubkey import

[Function]int gnutls_pubkey_import (gnutls pubkey t key , const
gnutls datum t * data , gnutls x509 crt fmt t format)

key : The structure to store the parsed public key.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will convert the given DER or PEM encoded Public key to the native
gnutls pubkey t format.The output will be stored * in key. If the Certificate is PEM
encoded it should have a header of "PUBLIC KEY".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pubkey init

[Function]int gnutls_pubkey_init (gnutls pubkey t * key)
key : The structure to be initialized

This function will initialize an public key structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 193

gnutls pubkey set key usage

[Function]int gnutls_pubkey_set_key_usage (gnutls pubkey t key , unsigned
int usage)

key : a certificate of type gnutls_x509_crt_t

usage: an ORed sequence of the GNUTLS KEY * elements.

This function will set the key usage flags of the public key. This is only useful if the
key is to be exported to a certificate or certificate request.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pubkey verify data

[Function]int gnutls_pubkey_verify_data (gnutls pubkey t pubkey , unsigned
int flags , const gnutls datum t * data , const gnutls datum t * signature)

pubkey : Holds the public key

flags: should be 0 for now

data: holds the data to be signed

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and a positive code on success.

Since: 2.12.0

gnutls pubkey verify hash

[Function]int gnutls_pubkey_verify_hash (gnutls pubkey t key , unsigned int
flags , const gnutls datum t * hash , const gnutls datum t * signature)

key : Holds the certificate

flags: should be 0 for now

hash: holds the hash digest to be verified

signature: contains the signature

This function will verify the given signed digest, using the parameters from the cer-
tificate.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and a positive code on success.

gnutls record check pending

[Function]size_t gnutls_record_check_pending (gnutls session t session)
session: is a gnutls_session_t structure.

This function checks if there are any data to receive in the gnutls buffers.

Note that you could also use select() to check for data in a TCP connection, instead
of this function. GnuTLS leaves some data in the tcp buffer in order for select to

Chapter 9: Function Reference 194

work. However the select() alternative is not recommended and will be deprecated
in later GnuTLS revisions.

Returns: the size of that data or 0.

gnutls record disable padding

[Function]void gnutls_record_disable_padding (gnutls session t session)
session: is a gnutls_session_t structure.

Used to disabled padding in TLS 1.0 and above. Normally you do not need to use
this function, but there are buggy clients that complain if a server pads the encrypted
data. This of course will disable protection against statistical attacks on the data.

Normally only servers that require maximum compatibility with everything out there,
need to call this function.

gnutls record get direction

[Function]int gnutls_record_get_direction (gnutls session t session)
session: is a gnutls_session_t structure.

This function provides information about the internals of the record protocol and is
only useful if a prior gnutls function call (e.g. gnutls_handshake()) was interrupted
for some reason, that is, if a function returned GNUTLS_E_INTERRUPTED or GNUTLS_
E_AGAIN. In such a case, you might want to call select() or poll() before calling
the interrupted gnutls function again. To tell you whether a file descriptor should be
selected for either reading or writing, gnutls_record_get_direction() returns 0 if
the interrupted function was trying to read data, and 1 if it was trying to write data.

Returns: 0 if trying to read data, 1 if trying to write data.

gnutls record get max size

[Function]size_t gnutls_record_get_max_size (gnutls session t session)
session: is a gnutls_session_t structure.

Get the record size. The maximum record size is negotiated by the client after the
first handshake message.

Returns: The maximum record packet size in this connection.

gnutls record recv

[Function]ssize_t gnutls_record_recv (gnutls session t session , void * data ,
size t sizeofdata)

session: is a gnutls_session_t structure.

data: the buffer that the data will be read into

sizeofdata: the number of requested bytes

This function has the similar semantics with recv(). The only difference is that it
accepts a GnuTLS session, and uses different error codes.

In the special case that a server requests a renegotiation, the client may receive an
error code of GNUTLS_E_REHANDSHAKE. This message may be simply ignored, replied

Chapter 9: Function Reference 195

with an alert GNUTLS_A_NO_RENEGOTIATION, or replied with a new handshake, de-
pending on the client’s will.

If EINTR is returned by the internal push function (the default is recv()) then GNUTLS_

E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN is
returned, you must call this function again to get the data. See also gnutls_record_

get_direction().

A server may also receive GNUTLS_E_REHANDSHAKE when a client has initiated a hand-
shake. In that case the server can only initiate a handshake or terminate the connec-
tion.

Returns: the number of bytes received and zero on EOF. A negative error code
is returned in case of an error. The number of bytes received might be less than
sizeofdata.

gnutls record send

[Function]ssize_t gnutls_record_send (gnutls session t session , const void *
data , size t sizeofdata)

session: is a gnutls_session_t structure.

data: contains the data to send

sizeofdata: is the length of the data

This function has the similar semantics with send(). The only difference is that it
accepts a GnuTLS session, and uses different error codes.

Note that if the send buffer is full, send() will block this function. See the send()

documentation for full information. You can replace the default push function by us-
ing gnutls_transport_set_ptr2() with a call to send() with a MSG DONTWAIT
flag if blocking is a problem.

If the EINTR is returned by the internal push function (the default is send()} then
GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_

AGAIN is returned, you must call this function again, with the same parameters;
alternatively you could provide a NULL pointer for data, and 0 for size. cf. gnutls_

record_get_direction().

Returns: the number of bytes sent, or a negative error code. The number of bytes
sent might be less than sizeofdata. The maximum number of bytes this function
can send in a single call depends on the negotiated maximum record size.

gnutls record set max size

[Function]ssize_t gnutls_record_set_max_size (gnutls session t session ,
size t size)

session: is a gnutls_session_t structure.

size: is the new size

This function sets the maximum record packet size in this connection. This property
can only be set to clients. The server may choose not to accept the requested size.

Acceptable values are 512(=2^9), 1024(=2^10), 2048(=2^11) and 4096(=2^12). The
requested record size does get in effect immediately only while sending data. The
receive part will take effect after a successful handshake.

Chapter 9: Function Reference 196

This function uses a TLS extension called ’max record size’. Not all TLS implemen-
tations use or even understand this extension.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls rehandshake

[Function]int gnutls_rehandshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function will renegotiate security parameters with the client. This should only
be called in case of a server.

This message informs the peer that we want to renegotiate parameters (perform a
handshake).

If this function succeeds (returns 0), you must call the gnutls_handshake() function
in order to negotiate the new parameters.

Since TLS is full duplex some application data might have been sent during peer’s
processing of this message. In that case one should call gnutls_record_recv() until
GNUTLS E REHANDSHAKE is returned to clear any pending data. Care must
be taken if rehandshake is mandatory to terminate if it does not start after some
threshold.

If the client does not wish to renegotiate parameters he will should with an alert
message, thus the return code will be GNUTLS_E_WARNING_ALERT_RECEIVED and the
alert will be GNUTLS_A_NO_RENEGOTIATION. A client may also choose to ignore this
message.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

gnutls rnd

[Function]int gnutls_rnd (gnutls rnd level t level , void * data , size t len)
level: a security level

data: place to store random bytes

len: The requested size

This function will generate random data and store it to output buffer.

Returns: Zero or a negative value on error.

gnutls rsa export get modulus bits

[Function]int gnutls_rsa_export_get_modulus_bits (gnutls session t
session)

session: is a gnutls session

Get the export RSA parameter’s modulus size.

Returns: the bits used in the last RSA-EXPORT key exchange with the peer, or a
negative value in case of error.

Chapter 9: Function Reference 197

gnutls rsa export get pubkey

[Function]int gnutls_rsa_export_get_pubkey (gnutls session t session ,
gnutls datum t * exponent , gnutls datum t * modulus)

session: is a gnutls session

exponent: will hold the exponent.

modulus: will hold the modulus.

This function will return the peer’s public key exponent and modulus used in the last
RSA-EXPORT authentication. The output parameters must be freed with gnutls_

free().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls rsa params cpy

[Function]int gnutls_rsa_params_cpy (gnutls rsa params t dst ,
gnutls rsa params t src)

dst: Is the destination structure, which should be initialized.

src: Is the source structure

This function will copy the RSA parameters structure from source to destination.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params deinit

[Function]void gnutls_rsa_params_deinit (gnutls rsa params t rsa_params)
rsa params: Is a structure that holds the parameters

This function will deinitialize the RSA parameters structure.

gnutls rsa params export pkcs1

[Function]int gnutls_rsa_params_export_pkcs1 (gnutls rsa params t params ,
gnutls x509 crt fmt t format , unsigned char * params_data , size t *
params_data_size)

params: Holds the RSA parameters

format: the format of output params. One of PEM or DER.

params data: will contain a PKCS1 RSAPublicKey structure PEM or DER encoded

params data size: holds the size of params data (and will be replaced by the actual
size of parameters)

This function will export the given RSA parameters to a PKCS1 RSAPublicKey
structure. If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

Chapter 9: Function Reference 198

gnutls rsa params export raw

[Function]int gnutls_rsa_params_export_raw (gnutls rsa params t params ,
gnutls datum t * m , gnutls datum t * e , gnutls datum t * d , gnutls datum t
* p , gnutls datum t * q , gnutls datum t * u , unsigned int * bits)

params: a structure that holds the rsa parameters

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

bits: if non null will hold the prime’s number of bits

This function will export the RSA parameters found in the given structure. The
new parameters will be allocated using gnutls_malloc() and will be stored in the
appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params generate2

[Function]int gnutls_rsa_params_generate2 (gnutls rsa params t params ,
unsigned int bits)

params: The structure where the parameters will be stored

bits: is the prime’s number of bits

This function will generate new temporary RSA parameters for use in RSA-EXPORT
ciphersuites. This function is normally slow.

Note that if the parameters are to be used in export cipher suites the bits value should
be 512 or less. Also note that the generation of new RSA parameters is only useful
to servers. Clients use the parameters sent by the server, thus it’s no use calling this
in client side.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params import pkcs1

[Function]int gnutls_rsa_params_import_pkcs1 (gnutls rsa params t params ,
const gnutls datum t * pkcs1_params , gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to

pkcs1 params: should contain a PKCS1 RSAPublicKey structure PEM or DER en-
coded

format: the format of params. PEM or DER.

This function will extract the RSAPublicKey found in a PKCS1 formatted structure.

If the structure is PEM encoded, it should have a header of "BEGIN RSA PRIVATE
KEY".

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

Chapter 9: Function Reference 199

gnutls rsa params import raw

[Function]int gnutls_rsa_params_import_raw (gnutls rsa params t
rsa_params , const gnutls datum t * m , const gnutls datum t * e , const
gnutls datum t * d , const gnutls datum t * p , const gnutls datum t * q , const
gnutls datum t * u)

rsa params: Is a structure will hold the parameters

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient

This function will replace the parameters in the given structure. The new parameters
should be stored in the appropriate gnutls datum.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params init

[Function]int gnutls_rsa_params_init (gnutls rsa params t * rsa_params)
rsa params: Is a structure that will hold the parameters

This function will initialize the temporary RSA parameters structure.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls safe renegotiation status

[Function]int gnutls_safe_renegotiation_status (gnutls session t session)
session: is a gnutls_session_t structure.

Can be used to check whether safe renegotiation is being used in the current session.

Returns: 0 when safe renegotiation is not used and non zero when safe renegotiation
is used.

Since: 2.10.0

gnutls sec param get name

[Function]const char * gnutls_sec_param_get_name (gnutls sec param t
param)

param: is a security parameter

Convert a gnutls_sec_param_t value to a string.

Returns: a pointer to a string that contains the name of the specified public key
algorithm, or NULL.

Chapter 9: Function Reference 200

gnutls sec param to pk bits

[Function]unsigned int gnutls_sec_param_to_pk_bits
(gnutls pk algorithm t algo , gnutls sec param t param)

algo: is a public key algorithm

param: is a security parameter

When generating private and public key pairs a difficult question is which size of
"bits" the modulus will be in RSA and the group size in DSA. The easy answer
is 1024, which is also wrong. This function will convert a human understandable
security parameter to an appropriate size for the specific algorithm.

Returns: The number of bits, or zero.

gnutls server name get

[Function]int gnutls_server_name_get (gnutls session t session , void * data ,
size t * data_length , unsigned int * type , unsigned int indx)

session: is a gnutls_session_t structure.

data: will hold the data

data length: will hold the data length. Must hold the maximum size of data.

type: will hold the server name indicator type

indx: is the index of the server name

This function will allow you to get the name indication (if any), a client has sent.
The name indication may be any of the enumeration gnutls server name type t.

If type is GNUTLS NAME DNS, then this function is to be used by servers that
support virtual hosting, and the data will be a null terminated UTF-8 string.

If data has not enough size to hold the server name GNUTLS E SHORT MEMORY BUFFER
is returned, and data_length will hold the required size.

index is used to retrieve more than one server names (if sent by the client). The first
server name has an index of 0, the second 1 and so on. If no name with the given
index exists GNUTLS E REQUESTED DATA NOT AVAILABLE is returned.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls server name set

[Function]int gnutls_server_name_set (gnutls session t session ,
gnutls server name type t type , const void * name , size t name_length)

session: is a gnutls_session_t structure.

type: specifies the indicator type

name: is a string that contains the server name.

name length: holds the length of name

This function is to be used by clients that want to inform (via a TLS extension
mechanism) the server of the name they connected to. This should be used by clients
that connect to servers that do virtual hosting.

Chapter 9: Function Reference 201

The value of name depends on the type type. In case of GNUTLS_NAME_DNS, an ASCII
zero-terminated domain name string, without the trailing dot, is expected. IPv4 or
IPv6 addresses are not permitted.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls session channel binding

[Function]int gnutls_session_channel_binding (gnutls session t session ,
gnutls channel binding t cbtype , gnutls datum t * cb)

session: is a gnutls_session_t structure.

cbtype: an gnutls_channel_binding_t enumeration type

cb: output buffer array with data

Extract given channel binding data of the cbtype (e.g., GNUTLS_CB_TLS_UNIQUE)
type.

Returns: GNUTLS_E_SUCCESS on success, GNUTLS_E_UNIMPLEMENTED_FEATURE if the
cbtype is unsupported, GNUTLS_E_CHANNEL_BINDING_NOT_AVAILABLE if the data is
not currently available, or an error code.

Since: 2.12.0

gnutls session enable compatibility mode

[Function]void gnutls_session_enable_compatibility_mode
(gnutls session t session)

session: is a gnutls_session_t structure.

This function can be used to disable certain (security) features in TLS in order
to maintain maximum compatibility with buggy clients. It is equivalent to calling:
gnutls_record_disable_padding()

Normally only servers that require maximum compatibility with everything out there,
need to call this function.

gnutls session get data2

[Function]int gnutls_session_get_data2 (gnutls session t session ,
gnutls datum t * data)

session: is a gnutls_session_t structure.

data: is a pointer to a datum that will hold the session.

Returns all session parameters, in order to support resuming. The client should call
this, and keep the returned session, if he wants to resume that current version later by
calling gnutls_session_set_data(). This function must be called after a successful
handshake. The returned datum must be freed with gnutls_free().

Resuming sessions is really useful and speedups connections after a successful one.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Chapter 9: Function Reference 202

gnutls session get data

[Function]int gnutls_session_get_data (gnutls session t session , void *
session_data , size t * session_data_size)

session: is a gnutls_session_t structure.

session data: is a pointer to space to hold the session.

session data size: is the session data’s size, or it will be set by the function.

Returns all session parameters, in order to support resuming. The client should call
this, and keep the returned session, if he wants to resume that current version later by
calling gnutls_session_set_data() This function must be called after a successful
handshake.

Resuming sessions is really useful and speedups connections after a successful one.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session get id

[Function]int gnutls_session_get_id (gnutls session t session , void *
session_id , size t * session_id_size)

session: is a gnutls_session_t structure.

session id: is a pointer to space to hold the session id.

session id size: is the session id’s size, or it will be set by the function.

Returns the current session id. This can be used if you want to check if the next
session you tried to resume was actually resumed. This is because resumed sessions
have the same sessionID with the original session.

Session id is some data set by the server, that identify the current session. In TLS
1.0 and SSL 3.0 session id is always less than 32 bytes.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session get ptr

[Function]void * gnutls_session_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.

Get user pointer for session. Useful in callbacks. This is the pointer set with gnutls_

session_set_ptr().

Returns: the user given pointer from the session structure, or NULL if it was never
set.

gnutls session is resumed

[Function]int gnutls_session_is_resumed (gnutls session t session)
session: is a gnutls_session_t structure.

Check whether session is resumed or not.

Returns: non zero if this session is resumed, or a zero if this is a new session.

Chapter 9: Function Reference 203

gnutls session set data

[Function]int gnutls_session_set_data (gnutls session t session , const void
* session_data , size t session_data_size)

session: is a gnutls_session_t structure.

session data: is a pointer to space to hold the session.

session data size: is the session’s size

Sets all session parameters, in order to resume a previously established session. The
session data given must be the one returned by gnutls_session_get_data(). This
function should be called before gnutls_handshake().

Keep in mind that session resuming is advisory. The server may choose not to resume
the session, thus a full handshake will be performed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session set ptr

[Function]void gnutls_session_set_ptr (gnutls session t session , void * ptr)
session: is a gnutls_session_t structure.

ptr: is the user pointer

This function will set (associate) the user given pointer ptr to the session structure.
This is pointer can be accessed with gnutls_session_get_ptr().

gnutls session ticket enable client

[Function]int gnutls_session_ticket_enable_client (gnutls session t
session)

session: is a gnutls_session_t structure.

Request that the client should attempt session resumption using SessionTicket.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

gnutls session ticket enable server

[Function]int gnutls_session_ticket_enable_server (gnutls session t
session , const gnutls datum t * key)

session: is a gnutls_session_t structure.

key : key to encrypt session parameters.

Request that the server should attempt session resumption using SessionTicket. key
must be initialized with gnutls_session_ticket_key_generate().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

Chapter 9: Function Reference 204

gnutls session ticket key generate

[Function]int gnutls_session_ticket_key_generate (gnutls datum t * key)
key : is a pointer to a gnutls_datum_t which will contain a newly created key.

Generate a random key to encrypt security parameters within SessionTicket.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

gnutls set default export priority

[Function]int gnutls_set_default_export_priority (gnutls session t
session)

session: is a gnutls_session_t structure.

Sets some default priority on the ciphers, key exchange methods, macs and compres-
sion methods. This function also includes weak algorithms.

This is the same as calling: gnutls priority set direct (session, "EXPORT", NULL);

This function is kept around for backwards compatibility, but because of its wide use
it is still fully supported. If you wish to allow users to provide a string that specify
which ciphers to use (which is recommended), you should use gnutls_priority_set_
direct() or gnutls_priority_set() instead.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls set default priority

[Function]int gnutls_set_default_priority (gnutls session t session)
session: is a gnutls_session_t structure.

Sets some default priority on the ciphers, key exchange methods, macs and compres-
sion methods.

This is the same as calling: gnutls priority set direct (session, "NORMAL", NULL);

This function is kept around for backwards compatibility, but because of its wide use
it is still fully supported. If you wish to allow users to provide a string that specify
which ciphers to use (which is recommended), you should use gnutls_priority_set_
direct() or gnutls_priority_set() instead.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls sign algorithm get name

[Function]const char * gnutls_sign_algorithm_get_name
(gnutls sign algorithm t sign)

sign: is a sign algorithm

Convert a gnutls_sign_algorithm_t value to a string.

Returns: a string that contains the name of the specified sign algorithm, or NULL.

Chapter 9: Function Reference 205

gnutls sign algorithm get requested

[Function]int gnutls_sign_algorithm_get_requested (gnutls session t
session , size t indx , gnutls sign algorithm t * algo)

session: is a gnutls_session_t structure.

indx: is an index of the signature algorithm to return

algo: the returned certificate type will be stored there

Returns the signature algorithm specified by index that was requested by the peer. If
the specified index has no data available this function returns GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE. If the negotiated TLS version does not support signature
algorithms then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned even
for the first index. The first index is 0.

This function is useful in the certificate callback functions to assist in selecting the
correct certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Since: 2.10.0

gnutls sign callback get

[Function]gnutls_sign_func gnutls_sign_callback_get (gnutls session t
session , void ** userdata)

session: is a gnutls session

userdata: if non-NULL, will be set to abstract callback pointer.

Retrieve the callback function, and its userdata pointer.

Returns: The function pointer set by gnutls_sign_callback_set(), or if not set,
NULL.

Deprecated: Use the PKCS 11 interfaces instead.

gnutls sign callback set

[Function]void gnutls_sign_callback_set (gnutls session t session ,
gnutls sign func sign_func , void * userdata)

session: is a gnutls session

sign func: function pointer to application’s sign callback.

userdata: void pointer that will be passed to sign callback.

Set the callback function. The function must have this prototype:

typedef int (*gnutls sign func) (gnutls session t session, void *userdata,
gnutls certificate type t cert type, const gnutls datum t * cert, const
gnutls datum t * hash, gnutls datum t * signature);

The userdata parameter is passed to the sign_func verbatim, and can be used to
store application-specific data needed in the callback function. See also gnutls_sign_
callback_get().

Deprecated: Use the PKCS 11 interfaces instead.

Chapter 9: Function Reference 206

gnutls sign get id

[Function]gnutls_sign_algorithm_t gnutls_sign_get_id (const char * name)
name: is a MAC algorithm name

The names are compared in a case insensitive way.

Returns: return a gnutls_sign_algorithm_t value corresponding to the specified
cipher, or GNUTLS_SIGN_UNKNOWN on error.

gnutls sign get name

[Function]const char * gnutls_sign_get_name (gnutls sign algorithm t
algorithm)

algorithm: is a public key signature algorithm

Convert a gnutls_sign_algorithm_t value to a string.

Returns: a pointer to a string that contains the name of the specified public key
signature algorithm, or NULL.

Since: 2.6.0

gnutls sign list

[Function]const gnutls_sign_algorithm_t * gnutls_sign_list (void)
Get a list of supported public key signature algorithms.

Returns: a zero-terminated list of gnutls_sign_algorithm_t integers indicating the
available ciphers.

gnutls srp allocate client credentials

[Function]int gnutls_srp_allocate_client_credentials
(gnutls srp client credentials t * sc)

sc: is a pointer to a gnutls_srp_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp allocate server credentials

[Function]int gnutls_srp_allocate_server_credentials
(gnutls srp server credentials t * sc)

sc: is a pointer to a gnutls_srp_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Chapter 9: Function Reference 207

gnutls srp base64 decode alloc

[Function]int gnutls_srp_base64_decode_alloc (const gnutls datum t *
b64_data , gnutls datum t * result)

b64 data: contains the encoded data

result: the place where decoded data lie

This function will decode the given encoded data. The decoded data will be allocated,
and stored into result. It will decode using the base64 algorithm as used in libsrp.

You should use gnutls_free() to free the returned data.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: 0 on success, or an error code.

gnutls srp base64 decode

[Function]int gnutls_srp_base64_decode (const gnutls datum t * b64_data ,
char * result , size t * result_size)

b64 data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data, using the base64 encoding found
in libsrp.

Note that b64_data should be null terminated.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

gnutls srp base64 encode alloc

[Function]int gnutls_srp_base64_encode_alloc (const gnutls datum t *
data , gnutls datum t * result)

data: contains the raw data

result: will hold the newly allocated encoded data

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in SRP password files. This function will allocate the
required memory to hold the encoded data.

You should use gnutls_free() to free the returned data.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: 0 on success, or an error code.

Chapter 9: Function Reference 208

gnutls srp base64 encode

[Function]int gnutls_srp_base64_encode (const gnutls datum t * data , char *
result , size t * result_size)

data: contain the raw data

result: the place where base64 data will be copied

result size: holds the size of the result

This function will convert the given data to printable data, using the base64 encoding,
as used in the libsrp. This is the encoding used in SRP password files. If the provided
buffer is not long enough GNUTLS E SHORT MEMORY BUFFER is returned.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

gnutls srp free client credentials

[Function]void gnutls_srp_free_client_credentials
(gnutls srp client credentials t sc)

sc: is a gnutls_srp_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls srp free server credentials

[Function]void gnutls_srp_free_server_credentials
(gnutls srp server credentials t sc)

sc: is a gnutls_srp_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls srp server get username

[Function]const char * gnutls_srp_server_get_username (gnutls session t
session)

session: is a gnutls session

This function will return the username of the peer. This should only be called in case
of SRP authentication and in case of a server. Returns NULL in case of an error.

Returns: SRP username of the peer, or NULL in case of error.

gnutls srp set client credentials function

[Function]void gnutls_srp_set_client_credentials_function
(gnutls srp client credentials t cred , gnutls srp client credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.

func: is the callback function

Chapter 9: Function Reference 209

This function can be used to set a callback to retrieve the username and password for
client SRP authentication. The callback’s function form is:

int (*callback)(gnutls session t, char** username, char**password);

The username and password must be allocated using gnutls_malloc(). username

and password should be ASCII strings or UTF-8 strings prepared using the "SASL-
prep" profile of "stringprep".

The callback function will be called once per handshake before the initial hello message
is sent.

The callback should not return a negative error code the second time called, since the
handshake procedure will be aborted.

The callback function should return 0 on success. -1 indicates an error.

gnutls srp set client credentials

[Function]int gnutls_srp_set_client_credentials
(gnutls srp client credentials t res , const char * username , const char *
password)

res: is a gnutls_srp_client_credentials_t structure.

username: is the user’s userid

password: is the user’s password

This function sets the username and password, in a gnutls_srp_client_

credentials_t structure. Those will be used in SRP authentication. username and
password should be ASCII strings or UTF-8 strings prepared using the "SASLprep"
profile of "stringprep".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp set prime bits

[Function]void gnutls_srp_set_prime_bits (gnutls session t session ,
unsigned int bits)

session: is a gnutls_session_t structure.

bits: is the number of bits

This function sets the minimum accepted number of bits, for use in an SRP key
exchange. If zero, the default 2048 bits will be used.

In the client side it sets the minimum accepted number of bits. If a server sends
a prime with less bits than that GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER will be
returned by the handshake.

This function has no effect in server side.

Since: 2.6.0

gnutls srp set server credentials file

[Function]int gnutls_srp_set_server_credentials_file
(gnutls srp server credentials t res , const char * password_file , const char
* password_conf_file)

res: is a gnutls_srp_server_credentials_t structure.

Chapter 9: Function Reference 210

password file: is the SRP password file (tpasswd)

password conf file: is the SRP password conf file (tpasswd.conf)

This function sets the password files, in a gnutls_srp_server_credentials_t struc-
ture. Those password files hold usernames and verifiers and will be used for SRP
authentication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp set server credentials function

[Function]void gnutls_srp_set_server_credentials_function
(gnutls srp server credentials t cred , gnutls srp server credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the user’s SRP credentials.
The callback’s function form is:

int (*callback)(gnutls session t, const char* username, gnutls datum t* salt,
gnutls datum t *verifier, gnutls datum t* g, gnutls datum t* n);

username contains the actual username. The salt, verifier, generator and prime

must be filled in using the gnutls_malloc(). For convenience prime and generator

may also be one of the static parameters defined in extra.h.

In case the callback returned a negative number then gnutls will assume that the
username does not exist.

In order to prevent attackers from guessing valid usernames, if a user does not exist,
g and n values should be filled in using a random user’s parameters. In that case the
callback must return the special value (1).

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

gnutls srp verifier

[Function]int gnutls_srp_verifier (const char * username , const char *
password , const gnutls datum t * salt , const gnutls datum t * generator ,
const gnutls datum t * prime , gnutls datum t * res)

username: is the user’s name

password: is the user’s password

salt: should be some randomly generated bytes

generator: is the generator of the group

prime: is the group’s prime

res: where the verifier will be stored.

This function will create an SRP verifier, as specified in RFC2945. The prime and
generator should be one of the static parameters defined in gnutls/extra.h or may be
generated using the libgcrypt functions gcry_prime_generate() and gcry_prime_

group_generator().

Chapter 9: Function Reference 211

The verifier will be allocated with malloc and will be stored in res using binary
format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls strerror name

[Function]const char * gnutls_strerror_name (int error)
error: is an error returned by a gnutls function.

Return the GnuTLS error code define as a string. For example, gnutls strerror name
(GNUTLS E DH PRIME UNACCEPTABLE) will return the string
"GNUTLS E DH PRIME UNACCEPTABLE".

Returns: A string corresponding to the symbol name of the error code.

Since: 2.6.0

gnutls strerror

[Function]const char * gnutls_strerror (int error)
error: is a GnuTLS error code, a negative value

This function is similar to strerror. The difference is that it accepts an error number
returned by a gnutls function; In case of an unknown error a descriptive string is sent
instead of NULL.

Error codes are always a negative value.

Returns: A string explaining the GnuTLS error message.

gnutls supplemental get name

[Function]const char * gnutls_supplemental_get_name
(gnutls supplemental data format type t type)

type: is a supplemental data format type

Convert a gnutls_supplemental_data_format_type_t value to a string.

Returns: a string that contains the name of the specified supplemental data format
type, or NULL for unknown types.

gnutls transport get ptr2

[Function]void gnutls_transport_get_ptr2 (gnutls session t session ,
gnutls transport ptr t * recv_ptr , gnutls transport ptr t * send_ptr)

session: is a gnutls_session_t structure.

recv ptr: will hold the value for the pull function

send ptr: will hold the value for the push function

Used to get the arguments of the transport functions (like PUSH and PULL). These
should have been set using gnutls_transport_set_ptr2().

Chapter 9: Function Reference 212

gnutls transport get ptr

[Function]gnutls_transport_ptr_t gnutls_transport_get_ptr
(gnutls session t session)

session: is a gnutls_session_t structure.

Used to get the first argument of the transport function (like PUSH and PULL). This
must have been set using gnutls_transport_set_ptr().

Returns: first argument of the transport function.

gnutls transport set errno function

[Function]void gnutls_transport_set_errno_function (gnutls session t
session , gnutls errno func errno_func)

session: is a gnutls_session_t structure.

errno func: a callback function similar to write()

This is the function where you set a function to retrieve errno after a failed push or
pull operation.

errno func is of the form, int (*gnutls errno func)(gnutls transport ptr t); and
should return the errno.

gnutls transport set errno

[Function]void gnutls_transport_set_errno (gnutls session t session , int
err)

session: is a gnutls_session_t structure.

err: error value to store in session-specific errno variable.

Store err in the session-specific errno variable. Useful values for err is EAGAIN
and EINTR, other values are treated will be treated as real errors in the push/pull
function.

This function is useful in replacement push/pull functions set by
gnutls transport set push function and gnutls transport set pullpush function
under Windows, where the replacement push/pull may not have access to the same
errno variable that is used by GnuTLS (e.g., the application is linked to msvcr71.dll
and gnutls is linked to msvcrt.dll).

If you don’t have the session variable easily accessible from the push/pull function,
and don’t worry about thread conflicts, you can also use gnutls_transport_set_

global_errno().

gnutls transport set global errno

[Function]void gnutls_transport_set_global_errno (int err)
err: error value to store in global errno variable.

Store err in the global errno variable. Useful values for err is EAGAIN and EINTR,
other values are treated will be treated as real errors in the push/pull function.

This function is useful in replacement push/pull functions set by
gnutls transport set push function and gnutls transport set pullpush function

Chapter 9: Function Reference 213

under Windows, where the replacement push/pull may not have access to the same
errno variable that is used by GnuTLS (e.g., the application is linked to msvcr71.dll
and gnutls is linked to msvcrt.dll).

Whether this function is thread safe or not depends on whether the global variable
errno is thread safe, some system libraries make it a thread-local variable. When
feasible, using the guaranteed thread-safe gnutls_transport_set_errno() may be
better.

gnutls transport set lowat

[Function]void gnutls_transport_set_lowat (gnutls session t session , int
num)

session: is a gnutls_session_t structure.

num: is the low water value.

Used to set the lowat value in order for select to check if there are pending data to
socket buffer. Used only if you have changed the default low water value (default is
1). Normally you will not need that function. This function is only useful if using
berkeley style sockets. Otherwise it must be called and set lowat to zero.

gnutls transport set ptr2

[Function]void gnutls_transport_set_ptr2 (gnutls session t session ,
gnutls transport ptr t recv_ptr , gnutls transport ptr t send_ptr)

session: is a gnutls_session_t structure.

recv ptr: is the value for the pull function

send ptr: is the value for the push function

Used to set the first argument of the transport function (like PUSH and PULL). In
berkeley style sockets this function will set the connection handle. With this function
you can use two different pointers for receiving and sending.

gnutls transport set ptr

[Function]void gnutls_transport_set_ptr (gnutls session t session ,
gnutls transport ptr t ptr)

session: is a gnutls_session_t structure.

ptr: is the value.

Used to set the first argument of the transport function (like PUSH and PULL). In
berkeley style sockets this function will set the connection handle.

gnutls transport set pull function

[Function]void gnutls_transport_set_pull_function (gnutls session t
session , gnutls pull func pull_func)

session: is a gnutls_session_t structure.

pull func: a callback function similar to read()

Chapter 9: Function Reference 214

This is the function where you set a function for gnutls to receive data. Normally,
if you use berkeley style sockets, do not need to use this function since the default
(recv(2)) will probably be ok.

PULL FUNC is of the form, ssize t (*gnutls pull func)(gnutls transport ptr t, void*,
size t);

gnutls transport set push function

[Function]void gnutls_transport_set_push_function (gnutls session t
session , gnutls push func push_func)

session: is a gnutls_session_t structure.

push func: a callback function similar to write()

This is the function where you set a push function for gnutls to use in order to
send data. If you are going to use berkeley style sockets, you do not need to use
this function since the default (send(2)) will probably be ok. Otherwise you should
specify this function for gnutls to be able to send data.

PUSH FUNC is of the form, ssize t (*gnutls push func)(gnutls transport ptr t,
const void*, size t);

gnutls transport set vec push function

[Function]void gnutls_transport_set_vec_push_function (gnutls session t
session , gnutls vec push func vec_func)

session: is a gnutls_session_t structure.

vec func: a callback function similar to writev()

This is the function where you set a push function for gnutls to use in order to
send data. If you are going to use berkeley style sockets, you do not need to use
this function since the default (send(2)) will probably be ok. Otherwise you should
specify this function for gnutls to be able to send data.

PUSH FUNC is of the form, ssize t (*gnutls push func)(gnutls transport ptr t,
const void*, size t);

gnutls x509 crq set pubkey

[Function]int gnutls_x509_crq_set_pubkey (gnutls x509 crq t crq ,
gnutls pubkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a public key

This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt import pkcs11 url

[Function]int gnutls_x509_crt_import_pkcs11_url (gnutls x509 crt t crt ,
const char * url , unsigned int flags)

crt: A certificate of type gnutls_x509_crt_t

Chapter 9: Function Reference 215

url: A PKCS 11 url

flags: One of GNUTLS PKCS11 OBJ * flags

This function will import a PKCS 11 certificate directly from a token without in-
volving the gnutls_pkcs11_obj_t structure. This function will fail if the certificate
stored is not of X.509 type.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt import pkcs11

[Function]int gnutls_x509_crt_import_pkcs11 (gnutls x509 crt t crt ,
gnutls pkcs11 obj t pkcs11_crt)

crt: A certificate of type gnutls_x509_crt_t

pkcs11 crt: A PKCS 11 object that contains a certificate

This function will import a PKCS 11 certificate to a gnutls_x509_crt_t structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt list import pkcs11

[Function]int gnutls_x509_crt_list_import_pkcs11 (gnutls x509 crt t *
certs , unsigned int cert_max , gnutls pkcs11 obj t * const objs , unsigned
int flags)

certs: A list of certificates of type gnutls_x509_crt_t

cert max: The maximum size of the list

objs: A list of PKCS 11 objects

flags: 0 for now

This function will import a PKCS 11 certificate list to a list of gnutls_x509_crt_t
structure. These must not be initialized.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set pubkey

[Function]int gnutls_x509_crt_set_pubkey (gnutls x509 crt t crt ,
gnutls pubkey t key)

crt: should contain a gnutls_x509_crt_t structure

key : holds a public key

This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

9.2 X.509 Certificate Functions

The following functions are to be used for X.509 certificate handling. Their prototypes lie
in ‘gnutls/x509.h’.

Chapter 9: Function Reference 216

gnutls pkcs12 bag decrypt

[Function]int gnutls_pkcs12_bag_decrypt (gnutls pkcs12 bag t bag , const
char * pass)

bag : The bag

pass: The password used for encryption, must be ASCII.

This function will decrypt the given encrypted bag and return 0 on success.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls pkcs12 bag deinit

[Function]void gnutls_pkcs12_bag_deinit (gnutls pkcs12 bag t bag)
bag : The structure to be initialized

This function will deinitialize a PKCS12 Bag structure.

gnutls pkcs12 bag encrypt

[Function]int gnutls_pkcs12_bag_encrypt (gnutls pkcs12 bag t bag , const
char * pass , unsigned int flags)

bag : The bag

pass: The password used for encryption, must be ASCII

flags: should be one of gnutls_pkcs_encrypt_flags_t elements bitwise or’d

This function will encrypt the given bag.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls pkcs12 bag get count

[Function]int gnutls_pkcs12_bag_get_count (gnutls pkcs12 bag t bag)
bag : The bag

This function will return the number of the elements withing the bag.

Returns: Number of elements in bag, or an negative error code on error.

gnutls pkcs12 bag get data

[Function]int gnutls_pkcs12_bag_get_data (gnutls pkcs12 bag t bag , int
indx , gnutls datum t * data)

bag : The bag

indx: The element of the bag to get the data from

data: where the bag’s data will be. Should be treated as constant.

This function will return the bag’s data. The data is a constant that is stored into
the bag. Should not be accessed after the bag is deleted.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 217

gnutls pkcs12 bag get friendly name

[Function]int gnutls_pkcs12_bag_get_friendly_name (gnutls pkcs12 bag t
bag , int indx , char ** name)

bag : The bag

indx: The bag’s element to add the id

name: will hold a pointer to the name (to be treated as const)

This function will return the friendly name, of the specified bag element. The key ID
is usually used to distinguish the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
or a negative value on error.

gnutls pkcs12 bag get key id

[Function]int gnutls_pkcs12_bag_get_key_id (gnutls pkcs12 bag t bag , int
indx , gnutls datum t * id)

bag : The bag

indx: The bag’s element to add the id

id: where the ID will be copied (to be treated as const)

This function will return the key ID, of the specified bag element. The key ID is
usually used to distinguish the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
or a negative value on error.

gnutls pkcs12 bag get type

[Function]gnutls_pkcs12_bag_type_t gnutls_pkcs12_bag_get_type
(gnutls pkcs12 bag t bag , int indx)

bag : The bag

indx: The element of the bag to get the type

This function will return the bag’s type.

Returns: One of the gnutls_pkcs12_bag_type_t enumerations.

gnutls pkcs12 bag init

[Function]int gnutls_pkcs12_bag_init (gnutls pkcs12 bag t * bag)
bag : The structure to be initialized

This function will initialize a PKCS12 bag structure. PKCS12 Bags usually contain
private keys, lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs12 bag set crl

[Function]int gnutls_pkcs12_bag_set_crl (gnutls pkcs12 bag t bag ,
gnutls x509 crl t crl)

bag : The bag

Chapter 9: Function Reference 218

crl: the CRL to be copied.

This function will insert the given CRL into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data().

Returns: the index of the added bag on success, or a negative value on failure.

gnutls pkcs12 bag set crt

[Function]int gnutls_pkcs12_bag_set_crt (gnutls pkcs12 bag t bag ,
gnutls x509 crt t crt)

bag : The bag

crt: the certificate to be copied.

This function will insert the given certificate into the bag. This is just a wrapper over
gnutls_pkcs12_bag_set_data().

Returns: the index of the added bag on success, or a negative value on failure.

gnutls pkcs12 bag set data

[Function]int gnutls_pkcs12_bag_set_data (gnutls pkcs12 bag t bag ,
gnutls pkcs12 bag type t type , const gnutls datum t * data)

bag : The bag

type: The data’s type

data: the data to be copied.

This function will insert the given data of the given type into the bag.

Returns: the index of the added bag on success, or a negative value on error.

gnutls pkcs12 bag set friendly name

[Function]int gnutls_pkcs12_bag_set_friendly_name (gnutls pkcs12 bag t
bag , int indx , const char * name)

bag : The bag

indx: The bag’s element to add the id

name: the name

This function will add the given key friendly name, to the specified, by the index,
bag element. The name will be encoded as a ’Friendly name’ bag attribute, which is
usually used to set a user name to the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
or a negative value on error.

gnutls pkcs12 bag set key id

[Function]int gnutls_pkcs12_bag_set_key_id (gnutls pkcs12 bag t bag , int
indx , const gnutls datum t * id)

bag : The bag

indx: The bag’s element to add the id

id: the ID

Chapter 9: Function Reference 219

This function will add the given key ID, to the specified, by the index, bag element.
The key ID will be encoded as a ’Local key identifier’ bag attribute, which is usually
used to distinguish the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
or a negative value on error.

gnutls pkcs12 deinit

[Function]void gnutls_pkcs12_deinit (gnutls pkcs12 t pkcs12)
pkcs12: The structure to be initialized

This function will deinitialize a PKCS12 structure.

gnutls pkcs12 export

[Function]int gnutls_pkcs12_export (gnutls pkcs12 t pkcs12 ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

pkcs12: Holds the pkcs12 structure

format: the format of output params. One of PEM or DER.

output data: will contain a structure PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the pkcs12 structure to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
will be updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN PKCS12".

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls pkcs12 generate mac

[Function]int gnutls_pkcs12_generate_mac (gnutls pkcs12 t pkcs12 , const
char * pass)

pkcs12: should contain a gnutls pkcs12 t structure

pass: The password for the MAC

This function will generate a MAC for the PKCS12 structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs12 get bag

[Function]int gnutls_pkcs12_get_bag (gnutls pkcs12 t pkcs12 , int indx ,
gnutls pkcs12 bag t bag)

pkcs12: should contain a gnutls pkcs12 t structure

indx: contains the index of the bag to extract

bag : An initialized bag, where the contents of the bag will be copied

This function will return a Bag from the PKCS12 structure.

Chapter 9: Function Reference 220

After the last Bag has been read GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be
returned.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs12 import

[Function]int gnutls_pkcs12_import (gnutls pkcs12 t pkcs12 , const
gnutls datum t * data , gnutls x509 crt fmt t format , unsigned int flags)

pkcs12: The structure to store the parsed PKCS12.

data: The DER or PEM encoded PKCS12.

format: One of DER or PEM

flags: an ORed sequence of gnutls privkey pkcs8 flags

This function will convert the given DER or PEM encoded PKCS12 to the native
gnutls pkcs12 t format. The output will be stored in ’pkcs12’.

If the PKCS12 is PEM encoded it should have a header of "PKCS12".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs12 init

[Function]int gnutls_pkcs12_init (gnutls pkcs12 t * pkcs12)
pkcs12: The structure to be initialized

This function will initialize a PKCS12 structure. PKCS12 structures usually contain
lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs12 set bag

[Function]int gnutls_pkcs12_set_bag (gnutls pkcs12 t pkcs12 ,
gnutls pkcs12 bag t bag)

pkcs12: should contain a gnutls pkcs12 t structure

bag : An initialized bag

This function will insert a Bag into the PKCS12 structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs12 verify mac

[Function]int gnutls_pkcs12_verify_mac (gnutls pkcs12 t pkcs12 , const char
* pass)

pkcs12: should contain a gnutls pkcs12 t structure

pass: The password for the MAC

This function will verify the MAC for the PKCS12 structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 221

gnutls pkcs7 deinit

[Function]void gnutls_pkcs7_deinit (gnutls pkcs7 t pkcs7)
pkcs7: The structure to be initialized

This function will deinitialize a PKCS7 structure.

gnutls pkcs7 delete crl

[Function]int gnutls_pkcs7_delete_crl (gnutls pkcs7 t pkcs7 , int indx)
pkcs7: should contain a gnutls_pkcs7_t structure

indx: the index of the crl to delete

This function will delete a crl from a PKCS7 or RFC2630 crl set. Index starts from
0. Returns 0 on success.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs7 delete crt

[Function]int gnutls_pkcs7_delete_crt (gnutls pkcs7 t pkcs7 , int indx)
pkcs7: should contain a gnutls pkcs7 t structure

indx: the index of the certificate to delete

This function will delete a certificate from a PKCS7 or RFC2630 certificate set. Index
starts from 0. Returns 0 on success.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs7 export

[Function]int gnutls_pkcs7_export (gnutls pkcs7 t pkcs7 ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

pkcs7: Holds the pkcs7 structure

format: the format of output params. One of PEM or DER.

output data: will contain a structure PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the pkcs7 structure to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output_data_size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN PKCS7".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs7 get crl count

[Function]int gnutls_pkcs7_get_crl_count (gnutls pkcs7 t pkcs7)
pkcs7: should contain a gnutls pkcs7 t structure

This function will return the number of certifcates in the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 222

gnutls pkcs7 get crl raw

[Function]int gnutls_pkcs7_get_crl_raw (gnutls pkcs7 t pkcs7 , int indx ,
void * crl , size t * crl_size)

pkcs7: should contain a gnutls_pkcs7_t structure

indx: contains the index of the crl to extract

crl: the contents of the crl will be copied there (may be null)

crl size: should hold the size of the crl

This function will return a crl of the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
If the provided buffer is not long enough, then crl_size is updated and GNUTLS_

E_SHORT_MEMORY_BUFFER is returned. After the last crl has been read GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls pkcs7 get crt count

[Function]int gnutls_pkcs7_get_crt_count (gnutls pkcs7 t pkcs7)
pkcs7: should contain a gnutls_pkcs7_t structure

This function will return the number of certifcates in the PKCS7 or RFC2630 certifi-
cate set.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs7 get crt raw

[Function]int gnutls_pkcs7_get_crt_raw (gnutls pkcs7 t pkcs7 , int indx ,
void * certificate , size t * certificate_size)

pkcs7: should contain a gnutls pkcs7 t structure

indx: contains the index of the certificate to extract

certificate: the contents of the certificate will be copied there (may be null)

certificate size: should hold the size of the certificate

This function will return a certificate of the PKCS7 or RFC2630 certificate set.

After the last certificate has been read GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE

will be returned.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
If the provided buffer is not long enough, then certificate_size is updated and
GNUTLS_E_SHORT_MEMORY_BUFFER is returned.

gnutls pkcs7 import

[Function]int gnutls_pkcs7_import (gnutls pkcs7 t pkcs7 , const
gnutls datum t * data , gnutls x509 crt fmt t format)

pkcs7: The structure to store the parsed PKCS7.

data: The DER or PEM encoded PKCS7.

format: One of DER or PEM

Chapter 9: Function Reference 223

This function will convert the given DER or PEM encoded PKCS7 to the native
gnutls_pkcs7_t format. The output will be stored in pkcs7.

If the PKCS7 is PEM encoded it should have a header of "PKCS7".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs7 init

[Function]int gnutls_pkcs7_init (gnutls pkcs7 t * pkcs7)
pkcs7: The structure to be initialized

This function will initialize a PKCS7 structure. PKCS7 structures usually contain
lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs7 set crl raw

[Function]int gnutls_pkcs7_set_crl_raw (gnutls pkcs7 t pkcs7 , const
gnutls datum t * crl)

pkcs7: should contain a gnutls_pkcs7_t structure

crl: the DER encoded crl to be added

This function will add a crl to the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs7 set crl

[Function]int gnutls_pkcs7_set_crl (gnutls pkcs7 t pkcs7 , gnutls x509 crl t
crl)

pkcs7: should contain a gnutls_pkcs7_t structure

crl: the DER encoded crl to be added

This function will add a parsed CRL to the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs7 set crt raw

[Function]int gnutls_pkcs7_set_crt_raw (gnutls pkcs7 t pkcs7 , const
gnutls datum t * crt)

pkcs7: should contain a gnutls_pkcs7_t structure

crt: the DER encoded certificate to be added

This function will add a certificate to the PKCS7 or RFC2630 certificate set.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls pkcs7 set crt

[Function]int gnutls_pkcs7_set_crt (gnutls pkcs7 t pkcs7 , gnutls x509 crt t
crt)

pkcs7: should contain a gnutls_pkcs7_t structure

crt: the certificate to be copied.

Chapter 9: Function Reference 224

This function will add a parsed certificate to the PKCS7 or RFC2630 certificate set.
This is a wrapper function over gnutls_pkcs7_set_crt_raw() .

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl check issuer

[Function]int gnutls_x509_crl_check_issuer (gnutls x509 crl t cert ,
gnutls x509 crt t issuer)

issuer: is the certificate of a possible issuer

This function will check if the given CRL was issued by the given issuer certificate.
It will return true (1) if the given CRL was issued by the given issuer, and false (0)
if not.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl deinit

[Function]void gnutls_x509_crl_deinit (gnutls x509 crl t crl)
crl: The structure to be initialized

This function will deinitialize a CRL structure.

gnutls x509 crl export

[Function]int gnutls_x509_crl_export (gnutls x509 crl t crl ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

crl: Holds the revocation list

format: the format of output params. One of PEM or DER.

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the revocation list to DER or PEM format.

If the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_

MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN X509 CRL".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
and a negative value on failure.

gnutls x509 crl get authority key id

[Function]int gnutls_x509_crl_get_authority_key_id (gnutls x509 crl t
crl , void * ret , size t * ret_size , unsigned int * critical)

crl: should contain a gnutls_x509_crl_t structure

ret: The place where the identifier will be copied

ret size: Holds the size of the result field.

critical: will be non zero if the extension is marked as critical (may be null)

Chapter 9: Function Reference 225

This function will return the CRL authority’s key identifier. This is obtained by the
X.509 Authority Key identifier extension field (2.5.29.35). Note that this function
only returns the keyIdentifier field of the extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value in
case of an error.

Since: 2.8.0

gnutls x509 crl get crt count

[Function]int gnutls_x509_crl_get_crt_count (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

This function will return the number of revoked certificates in the given CRL.

Returns: number of certificates, a negative value on failure.

gnutls x509 crl get crt serial

[Function]int gnutls_x509_crl_get_crt_serial (gnutls x509 crl t crl , int
indx , unsigned char * serial , size t * serial_size , time t * t)

crl: should contain a gnutls_x509_crl_t structure

indx: the index of the certificate to extract (starting from 0)

serial: where the serial number will be copied

serial size: initially holds the size of serial

t: if non null, will hold the time this certificate was revoked

This function will retrieve the serial number of the specified, by the index, revoked
certificate.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
and a negative value on error.

gnutls x509 crl get dn oid

[Function]int gnutls_x509_crl_get_dn_oid (gnutls x509 crl t crl , int indx ,
void * oid , size t * sizeof_oid)

crl: should contain a gnutls x509 crl t structure

indx: Specifies which DN OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the name (may be null)

sizeof oid: initially holds the size of ’oid’

This function will extract the requested OID of the name of the CRL issuer, specified
by the given index.

If oid is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the sizeof oid will be updated with the required size. On success 0
is returned.

Chapter 9: Function Reference 226

gnutls x509 crl get extension data

[Function]int gnutls_x509_crl_get_extension_data (gnutls x509 crl t crl ,
int indx , void * data , size t * sizeof_data)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to send. Use zero to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

This function will return the requested extension data in the CRL. The extension
data will be stored as a string in the provided buffer.

Use gnutls_x509_crl_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crl_get_extension_info() instead, if you want to get data in-
dexed by the extension OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value
in case of an error. If your have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crl get extension info

[Function]int gnutls_x509_crl_get_extension_info (gnutls x509 crl t crl ,
int indx , void * oid , size t * sizeof_oid , int * critical)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to send, use zero to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the maximum size of oid, on return holds actual size of oid.

critical: output variable with critical flag, may be NULL.

This function will return the requested extension OID in the CRL, and the critical
flag for it. The extension OID will be stored as a string in the provided buffer. Use
gnutls_x509_crl_get_extension_data() to extract the data.

If the buffer provided is not long enough to hold the output, then *sizeof_oid is
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value
in case of an error. If your have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crl get extension oid

[Function]int gnutls_x509_crl_get_extension_oid (gnutls x509 crl t crl ,
int indx , void * oid , size t * sizeof_oid)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to send, use zero to get the first one.

oid: a pointer to a structure to hold the OID (may be null)

Chapter 9: Function Reference 227

sizeof oid: initially holds the size of oid

This function will return the requested extension OID in the CRL. The extension
OID will be stored as a string in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value
in case of an error. If your have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crl get issuer dn by oid

[Function]int gnutls_x509_crl_get_issuer_dn_by_oid (gnutls x509 crl t
crl , const char * oid , int indx , unsigned int raw_flag , void * buf , size t *
sizeof_buf)

crl: should contain a gnutls x509 crl t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.

raw flag : If non zero returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the peer’s name (may be null)

sizeof buf : initially holds the size of buf

This function will extract the part of the name of the CRL issuer specified by the
given OID. The output will be encoded as described in RFC2253. The output string
will be ASCII or UTF-8 encoded, depending on the certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

If buf is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the sizeof buf will be updated with the required size, and 0 on success.

gnutls x509 crl get issuer dn

[Function]int gnutls_x509_crl_get_issuer_dn (const gnutls x509 crl t crl ,
char * buf , size t * sizeof_buf)

crl: should contain a gnutls x509 crl t structure

buf : a pointer to a structure to hold the peer’s name (may be null)

sizeof buf : initially holds the size of buf

This function will copy the name of the CRL issuer in the provided buffer. The name
will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

If buf is NULL then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the sizeof buf will be updated with the required size, and 0 on success.

Chapter 9: Function Reference 228

gnutls x509 crl get next update

[Function]time_t gnutls_x509_crl_get_next_update (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

This function will return the time the next CRL will be issued. This field is optional
in a CRL so it might be normal to get an error instead.

Returns: when the next CRL will be issued, or (time t)-1 on error.

gnutls x509 crl get number

[Function]int gnutls_x509_crl_get_number (gnutls x509 crl t crl , void * ret ,
size t * ret_size , unsigned int * critical)

crl: should contain a gnutls_x509_crl_t structure

ret: The place where the number will be copied

ret size: Holds the size of the result field.

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the CRL number extension. This is obtained by the CRL
Number extension field (2.5.29.20).

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value in
case of an error.

Since: 2.8.0

gnutls x509 crl get raw issuer dn

[Function]int gnutls_x509_crl_get_raw_issuer_dn (gnutls x509 crl t crl ,
gnutls datum t * dn)

crl: should contain a gnutls x509 crl t structure

dn: will hold the starting point of the DN

This function will return a pointer to the DER encoded DN structure and the length.

Returns: a negative value on error, and zero on success.

Since: 2.12.0

gnutls x509 crl get signature algorithm

[Function]int gnutls_x509_crl_get_signature_algorithm (gnutls x509 crl t
crl)

crl: should contain a gnutls_x509_crl_t structure

This function will return a value of the gnutls_sign_algorithm_t enumeration that
is the signature algorithm.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 229

gnutls x509 crl get signature

[Function]int gnutls_x509_crl_get_signature (gnutls x509 crl t crl , char *
sig , size t * sizeof_sig)

crl: should contain a gnutls x509 crl t structure

sig : a pointer where the signature part will be copied (may be null).

sizeof sig : initially holds the size of sig

This function will extract the signature field of a CRL.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
and a negative value on error.

gnutls x509 crl get this update

[Function]time_t gnutls_x509_crl_get_this_update (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

This function will return the time this CRL was issued.

Returns: when the CRL was issued, or (time t)-1 on error.

gnutls x509 crl get version

[Function]int gnutls_x509_crl_get_version (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

This function will return the version of the specified CRL.

Returns: The version number, or a negative value on error.

gnutls x509 crl import

[Function]int gnutls_x509_crl_import (gnutls x509 crl t crl , const
gnutls datum t * data , gnutls x509 crt fmt t format)

crl: The structure to store the parsed CRL.

data: The DER or PEM encoded CRL.

format: One of DER or PEM

This function will convert the given DER or PEM encoded CRL to the native gnutls_
x509_crl_t format. The output will be stored in ’crl’.

If the CRL is PEM encoded it should have a header of "X509 CRL".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl init

[Function]int gnutls_x509_crl_init (gnutls x509 crl t * crl)
crl: The structure to be initialized

This function will initialize a CRL structure. CRL stands for Certificate Revoca-
tion List. A revocation list usually contains lists of certificate serial numbers that
have been revoked by an Authority. The revocation lists are always signed with the
authority’s private key.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 230

gnutls x509 crl print

[Function]int gnutls_x509_crl_print (gnutls x509 crl t crl ,
gnutls certificate print formats t format , gnutls datum t * out)

crl: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with zero terminated string.

This function will pretty print a X.509 certificate revocation list, suitable for display
to a human.

The output out needs to be deallocate using gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl privkey sign

[Function]int gnutls_x509_crl_privkey_sign (gnutls x509 crl t crl ,
gnutls x509 crt t issuer , gnutls privkey t issuer_key ,
gnutls digest algorithm t dig , unsigned int flags)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl set authority key id

[Function]int gnutls_x509_crl_set_authority_key_id (gnutls x509 crl t
crl , const void * id , size t id_size)

crl: a CRL of type gnutls_x509_crl_t

id: The key ID

id size: Holds the size of the serial field.

This function will set the CRL’s authority key ID extension. Only the keyIdentifier
field can be set with this function.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.8.0

Chapter 9: Function Reference 231

gnutls x509 crl set crt serial

[Function]int gnutls_x509_crl_set_crt_serial (gnutls x509 crl t crl , const
void * serial , size t serial_size , time t revocation_time)

crl: should contain a gnutls x509 crl t structure

serial: The revoked certificate’s serial number

serial size: Holds the size of the serial field.

revocation time: The time this certificate was revoked

This function will set a revoked certificate’s serial number to the CRL.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl set crt

[Function]int gnutls_x509_crl_set_crt (gnutls x509 crl t crl ,
gnutls x509 crt t crt , time t revocation_time)

crl: should contain a gnutls x509 crl t structure

crt: a certificate of type gnutls_x509_crt_t with the revoked certificate

revocation time: The time this certificate was revoked

This function will set a revoked certificate’s serial number to the CRL.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl set next update

[Function]int gnutls_x509_crl_set_next_update (gnutls x509 crl t crl ,
time t exp_time)

crl: should contain a gnutls x509 crl t structure

exp time: The actual time

This function will set the time this CRL will be updated.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl set number

[Function]int gnutls_x509_crl_set_number (gnutls x509 crl t crl , const void
* nr , size t nr_size)

crl: a CRL of type gnutls_x509_crl_t

nr: The CRL number

nr size: Holds the size of the nr field.

This function will set the CRL’s number extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.8.0

Chapter 9: Function Reference 232

gnutls x509 crl set this update

[Function]int gnutls_x509_crl_set_this_update (gnutls x509 crl t crl ,
time t act_time)

crl: should contain a gnutls x509 crl t structure

act time: The actual time

This function will set the time this CRL was issued.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl set version

[Function]int gnutls_x509_crl_set_version (gnutls x509 crl t crl , unsigned
int version)

crl: should contain a gnutls x509 crl t structure

version: holds the version number. For CRLv1 crls must be 1.

This function will set the version of the CRL. This must be one for CRL version 1,
and so on. The CRLs generated by gnutls should have a version number of 2.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crl sign2

[Function]int gnutls_x509_crl_sign2 (gnutls x509 crl t crl , gnutls x509 crt t
issuer , gnutls x509 privkey t issuer_key , gnutls digest algorithm t dig ,
unsigned int flags)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Deprecated: Use gnutls_x509_crl_privkey_sign() instead.

gnutls x509 crl sign

[Function]int gnutls_x509_crl_sign (gnutls x509 crl t crl , gnutls x509 crt t
issuer , gnutls x509 privkey t issuer_key)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

Chapter 9: Function Reference 233

This function is the same a gnutls_x509_crl_sign2() with no flags, and SHA1 as
the hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Deprecated: Use gnutls_x509_crl_privkey_sign().

gnutls x509 crl verify

[Function]int gnutls_x509_crl_verify (gnutls x509 crl t crl , const
gnutls x509 crt t * CA_list , int CA_list_length , unsigned int flags ,
unsigned int * verify)

crl: is the crl to be verified

CA list: is a certificate list that is considered to be trusted one

CA list length: holds the number of CA certificates in CA list

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the crl verification output.

This function will try to verify the given crl and return its status. See gnutls_x509_
crt_list_verify() for a detailed description of return values.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq deinit

[Function]void gnutls_x509_crq_deinit (gnutls x509 crq t crq)
crq: The structure to be initialized

This function will deinitialize a PKCS10 certificate request structure.

gnutls x509 crq export

[Function]int gnutls_x509_crq_export (gnutls x509 crq t crq ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

crq: should contain a gnutls_x509_crq_t structure

format: the format of output params. One of PEM or DER.

output data: will contain a certificate request PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the certificate request to a PEM or DER encoded PKCS10
structure.

If the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_

MEMORY_BUFFER will be returned and *output_data_size will be updated.

If the structure is PEM encoded, it will have a header of "BEGIN NEW CERTIFI-
CATE REQUEST".

Return value: In case of failure a negative value will be returned, and 0 on success.

Chapter 9: Function Reference 234

gnutls x509 crq get attribute by oid

[Function]int gnutls_x509_crq_get_attribute_by_oid (gnutls x509 crq t
crq , const char * oid , int indx , void * buf , size t * sizeof_buf)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identified in zero-terminated string

indx: In case multiple same OIDs exist in the attribute list, this specifies which to
send, use zero to get the first one

buf : a pointer to a structure to hold the attribute data (may be NULL)

sizeof buf : initially holds the size of buf

This function will return the attribute in the certificate request specified by the given
Object ID. The attribute will be DER encoded.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq get attribute data

[Function]int gnutls_x509_crq_get_attribute_data (gnutls x509 crq t crq ,
int indx , void * data , size t * sizeof_data)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which attribute OID to send. Use zero to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

This function will return the requested attribute data in the certificate request. The
attribute data will be stored as a string in the provided buffer.

Use gnutls_x509_crq_get_attribute_info() to extract the OID. Use gnutls_

x509_crq_get_attribute_by_oid() instead, if you want to get data indexed by
the attribute OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value
in case of an error. If your have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get attribute info

[Function]int gnutls_x509_crq_get_attribute_info (gnutls x509 crq t crq ,
int indx , void * oid , size t * sizeof_oid)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which attribute OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the maximum size of oid, on return holds actual size of oid.

This function will return the requested attribute OID in the certificate, and the critical
flag for it. The attribute OID will be stored as a string in the provided buffer. Use
gnutls_x509_crq_get_attribute_data() to extract the data.

Chapter 9: Function Reference 235

If the buffer provided is not long enough to hold the output, then *sizeof_oid is
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value
in case of an error. If your have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get basic constraints

[Function]int gnutls_x509_crq_get_basic_constraints (gnutls x509 crq t
crq , unsigned int * critical , int * ca , int * pathlen)

crq: should contain a gnutls_x509_crq_t structure

critical: will be non zero if the extension is marked as critical

ca: pointer to output integer indicating CA status, may be NULL, value is 1 if the
certificate CA flag is set, 0 otherwise.

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative values indicate a present pathLenConstraint field and the actual value, -1
indicate that the field is absent.

This function will read the certificate’s basic constraints, and return the certificates
CA status. It reads the basicConstraints X.509 extension (2.5.29.19).

Return value: If the certificate is a CA a positive value will be returned, or zero if
the certificate does not have CA flag set. A negative value may be returned in case
of errors. If the certificate does not contain the basicConstraints extension GNUTLS_

E_REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get challenge password

[Function]int gnutls_x509_crq_get_challenge_password (gnutls x509 crq t
crq , char * pass , size t * sizeof_pass)

crq: should contain a gnutls_x509_crq_t structure

pass: will hold a zero-terminated password string

sizeof pass: Initially holds the size of pass.

This function will return the challenge password in the request. The challenge pass-
word is intended to be used for requesting a revocation of the certificate.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq get dn by oid

[Function]int gnutls_x509_crq_get_dn_by_oid (gnutls x509 crq t crq , const
char * oid , int indx , unsigned int raw_flag , void * buf , size t *
sizeof_buf)

crq: should contain a gnutls x509 crq t structure

oid: holds an Object Identified in null terminated string

Chapter 9: Function Reference 236

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.

raw flag : If non zero returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the name (may be NULL)

sizeof buf : initially holds the size of buf

This function will extract the part of the name of the Certificate request subject,
specified by the given OID. The output will be encoded as described in RFC2253.
The output string will be ASCII or UTF-8 encoded, depending on the certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *sizeof_buf will be updated with the required size. On success
0 is returned.

gnutls x509 crq get dn oid

[Function]int gnutls_x509_crq_get_dn_oid (gnutls x509 crq t crq , int indx ,
void * oid , size t * sizeof_oid)

crq: should contain a gnutls x509 crq t structure

indx: Specifies which DN OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the name (may be NULL)

sizeof oid: initially holds the size of oid

This function will extract the requested OID of the name of the certificate request
subject, specified by the given index.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *sizeof_oid will be updated with the required size. On success
0 is returned.

gnutls x509 crq get dn

[Function]int gnutls_x509_crq_get_dn (gnutls x509 crq t crq , char * buf ,
size t * sizeof_buf)

crq: should contain a gnutls_x509_crq_t structure

buf : a pointer to a structure to hold the name (may be NULL)

sizeof buf : initially holds the size of buf

This function will copy the name of the Certificate request subject to the provided
buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in
RFC 2253. The output string buf will be ASCII or UTF-8 encoded, depending on
the certificate data.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *sizeof_buf will be updated with the required size. On success
0 is returned.

Chapter 9: Function Reference 237

gnutls x509 crq get extension by oid

[Function]int gnutls_x509_crq_get_extension_by_oid (gnutls x509 crq t
crq , const char * oid , int indx , void * buf , size t * sizeof_buf , unsigned
int * critical)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the extensions, this specifies which to send.
Use zero to get the first one.

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

critical: will be non zero if the extension is marked as critical

This function will return the extension specified by the OID in the certificate. The
extensions will be returned as binary data DER encoded, in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value in
case of an error. If the certificate does not contain the specified extension GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get extension data

[Function]int gnutls_x509_crq_get_extension_data (gnutls x509 crq t crq ,
int indx , void * data , size t * sizeof_data)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which extension OID to send. Use zero to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

This function will return the requested extension data in the certificate. The extension
data will be stored as a string in the provided buffer.

Use gnutls_x509_crq_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crq_get_extension_by_oid() instead, if you want to get data
indexed by the extension OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value
in case of an error. If your have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get extension info

[Function]int gnutls_x509_crq_get_extension_info (gnutls x509 crq t crq ,
int indx , void * oid , size t * sizeof_oid , int * critical)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which extension OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the OID

Chapter 9: Function Reference 238

sizeof oid: initially holds the maximum size of oid, on return holds actual size of oid.

critical: output variable with critical flag, may be NULL.

This function will return the requested extension OID in the certificate, and the
critical flag for it. The extension OID will be stored as a string in the provided
buffer. Use gnutls_x509_crq_get_extension_data() to extract the data.

If the buffer provided is not long enough to hold the output, then *sizeof_oid is
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative value
in case of an error. If your have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get key id

[Function]int gnutls_x509_crq_get_key_id (gnutls x509 crq t crq , unsigned
int flags , unsigned char * output_data , size t * output_data_size)

crq: a certificate of type gnutls_x509_crq_t

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then *output_data_
size is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.
The output will normally be a SHA-1 hash output, which is 20 bytes.

Return value: In case of failure a negative value will be returned, and 0 on success.

Since: 2.8.0

gnutls x509 crq get key purpose oid

[Function]int gnutls_x509_crq_get_key_purpose_oid (gnutls x509 crq t crq ,
int indx , void * oid , size t * sizeof_oid , unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

indx: This specifies which OID to return, use zero to get the first one

oid: a pointer to a buffer to hold the OID (may be NULL)

sizeof oid: initially holds the size of oid

critical: output variable with critical flag, may be NULL.

This function will extract the key purpose OIDs of the Certificate specified by the
given index. These are stored in the Extended Key Usage extension (2.5.29.37). See
the GNUTLS KP * definitions for human readable names.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *sizeof_oid will be updated with the required size. On success
0 is returned.

Since: 2.8.0

Chapter 9: Function Reference 239

gnutls x509 crq get key rsa raw

[Function]int gnutls_x509_crq_get_key_rsa_raw (gnutls x509 crq t crq ,
gnutls datum t * m , gnutls datum t * e)

crq: Holds the certificate

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.8.0

gnutls x509 crq get key usage

[Function]int gnutls_x509_crq_get_key_usage (gnutls x509 crq t crq ,
unsigned int * key_usage , unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

key usage: where the key usage bits will be stored

critical: will be non zero if the extension is marked as critical

This function will return certificate’s key usage, by reading the keyUsage X.509 ex-
tension (2.5.29.15). The key usage value will

ORed values of the: GNUTLS_KEY_DIGITAL_SIGNATURE, GNUTLS_KEY_NON_

REPUDIATION, GNUTLS_KEY_KEY_ENCIPHERMENT, GNUTLS_KEY_DATA_ENCIPHERMENT,
GNUTLS_KEY_KEY_AGREEMENT, GNUTLS_KEY_KEY_CERT_SIGN, GNUTLS_KEY_CRL_SIGN,
GNUTLS_KEY_ENCIPHER_ONLY, GNUTLS_KEY_DECIPHER_ONLY.

Returns: the certificate key usage, or a negative value in case of parsing error. If
the certificate does not contain the keyUsage extension GNUTLS_E_REQUESTED_DATA_

NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get pk algorithm

[Function]int gnutls_x509_crq_get_pk_algorithm (gnutls x509 crq t crq ,
unsigned int * bits)

crq: should contain a gnutls_x509_crq_t structure

bits: if bits is non-NULL it will hold the size of the parameters’ in bits

This function will return the public key algorithm of a PKCS10 certificate request.

If bits is non-NULL, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative value on error.

Chapter 9: Function Reference 240

gnutls x509 crq get subject alt name

[Function]int gnutls_x509_crq_get_subject_alt_name (gnutls x509 crq t
crq , unsigned int seq , void * ret , size t * ret_size , unsigned int *
ret_type , unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

seq: specifies the sequence number of the alt name, 0 for the first one, 1 for the second
etc.

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

ret type: holds the gnutls_x509_subject_alt_name_t name type

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the alternative names, contained in the given certificate. It
is the same as gnutls_x509_crq_get_subject_alt_name() except for the fact that
it will return the type of the alternative name in ret_type even if the function fails
for some reason (i.e. the buffer provided is not enough).

Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_

BUFFER if ret_size is not large enough to hold the value. In that case
ret_size will be updated with the required size. If the certificate request
does not have an Alternative name with the specified sequence number then
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Since: 2.8.0

gnutls x509 crq get subject alt othername oid

[Function]int gnutls_x509_crq_get_subject_alt_othername_oid
(gnutls x509 crq t crq , unsigned int seq , void * ret , size t * ret_size)

crq: should contain a gnutls_x509_crq_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the otherName OID will be copied to

ret size: holds the size of ret.

This function will extract the type OID of an otherName Subject Alternative Name,
contained in the given certificate, and return the type as an enumerated element.

This function is only useful if gnutls_x509_crq_get_subject_alt_name() returned
GNUTLS_SAN_OTHERNAME.

Returns: the alternative subject name type on success, one of the enumerated
gnutls x509 subject alt name t. For supported OIDs, it will return one of the virtual
(GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_XMPP,
and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_SHORT_

MEMORY_BUFFER if ret_size is not large enough to hold the value. In that case
ret_size will be updated with the required size. If the certificate does not have an
Alternative name with the specified sequence number and with the otherName type
then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Chapter 9: Function Reference 241

Since: 2.8.0

gnutls x509 crq get version

[Function]int gnutls_x509_crq_get_version (gnutls x509 crq t crq)
crq: should contain a gnutls_x509_crq_t structure

This function will return the version of the specified Certificate request.

Returns: version of certificate request, or a negative value on error.

gnutls x509 crq import

[Function]int gnutls_x509_crq_import (gnutls x509 crq t crq , const
gnutls datum t * data , gnutls x509 crt fmt t format)

crq: The structure to store the parsed certificate request.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will convert the given DER or PEM encoded certificate request to a
gnutls_x509_crq_t structure. The output will be stored in crq.

If the Certificate is PEM encoded it should have a header of "NEW CERTIFICATE
REQUEST".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq init

[Function]int gnutls_x509_crq_init (gnutls x509 crq t * crq)
crq: The structure to be initialized

This function will initialize a PKCS10 certificate request structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq print

[Function]int gnutls_x509_crq_print (gnutls x509 crq t crq ,
gnutls certificate print formats t format , gnutls datum t * out)

crq: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with zero terminated string.

This function will pretty print a certificate request, suitable for display to a human.

The output out needs to be deallocate using gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.8.0

Chapter 9: Function Reference 242

gnutls x509 crq privkey sign

[Function]int gnutls_x509_crq_privkey_sign (gnutls x509 crq t crq ,
gnutls privkey t key , gnutls digest algorithm t dig , unsigned int flags)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

dig : The message digest to use, i.e., GNUTLS_DIG_SHA1

flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error. GNUTLS_E_ASN1_VALUE_
NOT_FOUND is returned if you didn’t set all information in the certificate request (e.g.,
the version using gnutls_x509_crq_set_version()).

gnutls x509 crq set attribute by oid

[Function]int gnutls_x509_crq_set_attribute_by_oid (gnutls x509 crq t
crq , const char * oid , void * buf , size t sizeof_buf)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identified in zero-terminated string

buf : a pointer to a structure that holds the attribute data

sizeof buf : holds the size of buf

This function will set the attribute in the certificate request specified by the given
Object ID. The attribute must be be DER encoded.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq set basic constraints

[Function]int gnutls_x509_crq_set_basic_constraints (gnutls x509 crq t
crq , unsigned int ca , int pathLenConstraint)

crq: a certificate request of type gnutls_x509_crq_t

ca: true(1) or false(0) depending on the Certificate authority status.

pathLenConstraint: non-negative values indicate maximum length of path, and neg-
ative values indicate that the pathLenConstraints field should not be present.

This function will set the basicConstraints certificate extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.8.0

Chapter 9: Function Reference 243

gnutls x509 crq set challenge password

[Function]int gnutls_x509_crq_set_challenge_password (gnutls x509 crq t
crq , const char * pass)

crq: should contain a gnutls_x509_crq_t structure

pass: holds a zero-terminated password

This function will set a challenge password to be used when revoking the request.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq set dn by oid

[Function]int gnutls_x509_crq_set_dn_by_oid (gnutls x509 crq t crq , const
char * oid , unsigned int raw_flag , const void * data , unsigned int
sizeof_data)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identifier in a zero-terminated string

raw flag : must be 0, or 1 if the data are DER encoded

data: a pointer to the input data

sizeof data: holds the size of data

This function will set the part of the name of the Certificate request subject, specified
by the given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw flag set.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq set key purpose oid

[Function]int gnutls_x509_crq_set_key_purpose_oid (gnutls x509 crq t crq ,
const void * oid , unsigned int critical)

crq: a certificate of type gnutls_x509_crq_t

oid: a pointer to a zero-terminated string that holds the OID

critical: Whether this extension will be critical or not

This function will set the key purpose OIDs of the Certificate. These are stored in
the Extended Key Usage extension (2.5.29.37) See the GNUTLS KP * definitions for
human readable names.

Subsequent calls to this function will append OIDs to the OID list.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.8.0

Chapter 9: Function Reference 244

gnutls x509 crq set key rsa raw

[Function]int gnutls_x509_crq_set_key_rsa_raw (gnutls x509 crq t crq ,
const gnutls datum t * m , const gnutls datum t * e)

crq: should contain a gnutls_x509_crq_t structure

m: holds the modulus

e: holds the public exponent

This function will set the public parameters from the given private key to the request.
Only RSA keys are currently supported.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.6.0

gnutls x509 crq set key usage

[Function]int gnutls_x509_crq_set_key_usage (gnutls x509 crq t crq ,
unsigned int usage)

crq: a certificate request of type gnutls_x509_crq_t

usage: an ORed sequence of the GNUTLS KEY * elements.

This function will set the keyUsage certificate extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.8.0

gnutls x509 crq set key

[Function]int gnutls_x509_crq_set_key (gnutls x509 crq t crq ,
gnutls x509 privkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

This function will set the public parameters from the given private key to the request.
Only RSA keys are currently supported.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq set subject alt name

[Function]int gnutls_x509_crq_set_subject_alt_name (gnutls x509 crq t
crq , gnutls x509 subject alt name t nt , const void * data , unsigned int
data_size , unsigned int flags)

crq: a certificate request of type gnutls_x509_crq_t

nt: is one of the gnutls_x509_subject_alt_name_t enumerations

data: The data to be set

data size: The size of data to be set

flags: GNUTLS_FSAN_SET to clear previous data or GNUTLS_FSAN_APPEND to append.

This function will set the subject alternative name certificate extension. It can set
the following types:

Chapter 9: Function Reference 245

&GNUTLS SAN DNSNAME: as a text string

&GNUTLS SAN RFC822NAME: as a text string

&GNUTLS SAN URI: as a text string

&GNUTLS SAN IPADDRESS: as a binary IP address (4 or 16 bytes)

Other values can be set as binary values with the proper DER encoding.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.8.0

gnutls x509 crq set version

[Function]int gnutls_x509_crq_set_version (gnutls x509 crq t crq , unsigned
int version)

crq: should contain a gnutls_x509_crq_t structure

version: holds the version number, for v1 Requests must be 1

This function will set the version of the certificate request. For version 1 requests this
must be one.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crq sign2

[Function]int gnutls_x509_crq_sign2 (gnutls x509 crq t crq ,
gnutls x509 privkey t key , gnutls digest algorithm t dig , unsigned int
flags)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

dig : The message digest to use, i.e., GNUTLS_DIG_SHA1

flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error. GNUTLS_E_ASN1_VALUE_
NOT_FOUND is returned if you didn’t set all information in the certificate request (e.g.,
the version using gnutls_x509_crq_set_version()).

Deprecated: Use gnutls_x509_crq_privkey_sign() instead.

gnutls x509 crq sign

[Function]int gnutls_x509_crq_sign (gnutls x509 crq t crq ,
gnutls x509 privkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

Chapter 9: Function Reference 246

This function is the same a gnutls_x509_crq_sign2() with no flags, and SHA1 as
the hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Deprecated: Use gnutls_x509_crq_privkey_sign() instead.

gnutls x509 crt check hostname

[Function]int gnutls_x509_crt_check_hostname (gnutls x509 crt t cert ,
const char * hostname)

cert: should contain an gnutls x509 crt t structure

hostname: A null terminated string that contains a DNS name

This function will check if the given certificate’s subject matches the given hostname.
This is a basic implementation of the matching described in RFC2818 (HTTPS),
which takes into account wildcards, and the DNSName/IPAddress subject alternative
name PKIX extension.

Returns: non zero for a successful match, and zero on failure.

gnutls x509 crt check issuer

[Function]int gnutls_x509_crt_check_issuer (gnutls x509 crt t cert ,
gnutls x509 crt t issuer)

cert: is the certificate to be checked

issuer: is the certificate of a possible issuer

This function will check if the given certificate was issued by the given issuer.

Returns: It will return true (1) if the given certificate is issued by the given issuer,
and false (0) if not. A negative value is returned in case of an error.

gnutls x509 crt check revocation

[Function]int gnutls_x509_crt_check_revocation (gnutls x509 crt t cert ,
const gnutls x509 crl t * crl_list , int crl_list_length)

cert: should contain a gnutls_x509_crt_t structure

crl list: should contain a list of gnutls x509 crl t structures

crl list length: the length of the crl list

This function will return check if the given certificate is revoked. It is assumed that
the CRLs have been verified before.

Returns: 0 if the certificate is NOT revoked, and 1 if it is. A negative value is returned
on error.

gnutls x509 crt cpy crl dist points

[Function]int gnutls_x509_crt_cpy_crl_dist_points (gnutls x509 crt t dst ,
gnutls x509 crt t src)

dst: a certificate of type gnutls_x509_crt_t

src: the certificate where the dist points will be copied from

Chapter 9: Function Reference 247

This function will copy the CRL distribution points certificate extension, from the
source to the destination certificate. This may be useful to copy from a CA certificate
to issued ones.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt deinit

[Function]void gnutls_x509_crt_deinit (gnutls x509 crt t cert)
cert: The structure to be deinitialized

This function will deinitialize a certificate structure.

gnutls x509 crt export

[Function]int gnutls_x509_crt_export (gnutls x509 crt t cert ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

cert: Holds the certificate

format: the format of output params. One of PEM or DER.

output data: will contain a certificate PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the certificate to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls x509 crt get activation time

[Function]time_t gnutls_x509_crt_get_activation_time (gnutls x509 crt t
cert)

cert: should contain a gnutls_x509_crt_t structure

This function will return the time this Certificate was or will be activated.

Returns: activation time, or (time t)-1 on error.

gnutls x509 crt get authority key id

[Function]int gnutls_x509_crt_get_authority_key_id (gnutls x509 crt t
cert , void * ret , size t * ret_size , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

ret: The place where the identifier will be copied

ret size: Holds the size of the result field.

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the X.509v3 certificate authority’s key identifier. This is
obtained by the X.509 Authority Key identifier extension field (2.5.29.35). Note that
this function only returns the keyIdentifier field of the extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 248

gnutls x509 crt get basic constraints

[Function]int gnutls_x509_crt_get_basic_constraints (gnutls x509 crt t
cert , unsigned int * critical , int * ca , int * pathlen)

cert: should contain a gnutls_x509_crt_t structure

critical: will be non zero if the extension is marked as critical

ca: pointer to output integer indicating CA status, may be NULL, value is 1 if the
certificate CA flag is set, 0 otherwise.

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative values indicate a present pathLenConstraint field and the actual value, -1
indicate that the field is absent.

This function will read the certificate’s basic constraints, and return the certificates
CA status. It reads the basicConstraints X.509 extension (2.5.29.19).

Return value: If the certificate is a CA a positive value will be returned, or zero
if the certificate does not have CA flag set. A negative value may be returned in
case of errors. If the certificate does not contain the basicConstraints extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get ca status

[Function]int gnutls_x509_crt_get_ca_status (gnutls x509 crt t cert ,
unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

critical: will be non zero if the extension is marked as critical

This function will return certificates CA status, by reading the basicConstraints X.509
extension (2.5.29.19). If the certificate is a CA a positive value will be returned, or
zero if the certificate does not have CA flag set.

Use gnutls_x509_crt_get_basic_constraints() if you want to read the pathLen-
Constraint field too.

Returns: A negative value may be returned in case of parsing error. If the cer-
tificate does not contain the basicConstraints extension GNUTLS_E_REQUESTED_DATA_

NOT_AVAILABLE will be returned.

gnutls x509 crt get crl dist points

[Function]int gnutls_x509_crt_get_crl_dist_points (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
reason_flags , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the distribution point (0 for the first one, 1 for
the second etc.)

ret: is the place where the distribution point will be copied to

ret size: holds the size of ret.

reason flags: Revocation reasons flags.

critical: will be non zero if the extension is marked as critical (may be null)

Chapter 9: Function Reference 249

This function retrieves the CRL distribution points (2.5.29.31), contained in the given
certificate in the X509v3 Certificate Extensions.

reason_flags should be an ORed sequence of GNUTLS_CRL_REASON_UNUSED, GNUTLS_
CRL_REASON_KEY_COMPROMISE, GNUTLS_CRL_REASON_CA_COMPROMISE, GNUTLS_

CRL_REASON_AFFILIATION_CHANGED, GNUTLS_CRL_REASON_SUPERSEEDED, GNUTLS_

CRL_REASON_CESSATION_OF_OPERATION, GNUTLS_CRL_REASON_CERTIFICATE_HOLD,
GNUTLS_CRL_REASON_PRIVILEGE_WITHDRAWN, GNUTLS_CRL_REASON_AA_COMPROMISE,
or zero for all possible reasons.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER and updates &ret_size if &ret_size
is not enough to hold the distribution point, or the type of the distribution point
if everything was ok. The type is one of the enumerated gnutls_x509_subject_

alt_name_t. If the certificate does not have an Alternative name with the specified
sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

gnutls x509 crt get dn by oid

[Function]int gnutls_x509_crt_get_dn_by_oid (gnutls x509 crt t cert , const
char * oid , int indx , unsigned int raw_flag , void * buf , size t *
sizeof_buf)

cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.

raw flag : If non zero returns the raw DER data of the DN part.

buf : a pointer where the DN part will be copied (may be null).

sizeof buf : initially holds the size of buf

This function will extract the part of the name of the Certificate subject specified by
the given OID. The output, if the raw flag is not used, will be encoded as described
in RFC2253. Thus a string that is ASCII or UTF-8 encoded, depending on the
certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

If buf is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *sizeof buf will be updated with the required size. On success 0
is returned.

gnutls x509 crt get dn oid

[Function]int gnutls_x509_crt_get_dn_oid (gnutls x509 crt t cert , int indx ,
void * oid , size t * sizeof_oid)

cert: should contain a gnutls_x509_crt_t structure

indx: This specifies which OID to return. Use zero to get the first one.

Chapter 9: Function Reference 250

oid: a pointer to a buffer to hold the OID (may be null)

sizeof oid: initially holds the size of oid

This function will extract the OIDs of the name of the Certificate subject specified
by the given index.

If oid is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *sizeof oid will be updated with the required size. On success 0
is returned.

gnutls x509 crt get dn

[Function]int gnutls_x509_crt_get_dn (gnutls x509 crt t cert , char * buf ,
size t * sizeof_buf)

cert: should contain a gnutls_x509_crt_t structure

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

This function will copy the name of the Certificate in the provided buffer. The name
will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

If buf is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *sizeof buf will be updated with the required size. On success 0
is returned.

gnutls x509 crt get expiration time

[Function]time_t gnutls_x509_crt_get_expiration_time (gnutls x509 crt t
cert)

cert: should contain a gnutls_x509_crt_t structure

This function will return the time this Certificate was or will be expired.

Returns: expiration time, or (time t)-1 on error.

gnutls x509 crt get extension by oid

[Function]int gnutls_x509_crt_get_extension_by_oid (gnutls x509 crt t
cert , const char * oid , int indx , void * buf , size t * sizeof_buf , unsigned
int * critical)

cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the extensions, this specifies which to send.
Use zero to get the first one.

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

critical: will be non zero if the extension is marked as critical

Chapter 9: Function Reference 251

This function will return the extension specified by the OID in the certificate. The
extensions will be returned as binary data DER encoded, in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error
code is returned. If the certificate does not contain the specified extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get extension data

[Function]int gnutls_x509_crt_get_extension_data (gnutls x509 crt t cert ,
int indx , void * data , size t * sizeof_data)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to send. Use zero to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

This function will return the requested extension data in the certificate. The extension
data will be stored as a string in the provided buffer.

Use gnutls_x509_crt_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crt_get_extension_by_oid() instead, if you want to get data
indexed by the extension OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned. If you have reached the last extension available GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE will be returned.

gnutls x509 crt get extension info

[Function]int gnutls_x509_crt_get_extension_info (gnutls x509 crt t cert ,
int indx , void * oid , size t * sizeof_oid , int * critical)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the maximum size of oid, on return holds actual size of oid.

critical: output variable with critical flag, may be NULL.

This function will return the requested extension OID in the certificate, and the
critical flag for it. The extension OID will be stored as a string in the provided
buffer. Use gnutls_x509_crt_get_extension_data() to extract the data.

If the buffer provided is not long enough to hold the output, then *sizeof_oid is
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned. If you have reached the last extension available GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE will be returned.

Chapter 9: Function Reference 252

gnutls x509 crt get extension oid

[Function]int gnutls_x509_crt_get_extension_oid (gnutls x509 crt t cert ,
int indx , void * oid , size t * sizeof_oid)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to send. Use zero to get the first one.

oid: a pointer to a structure to hold the OID (may be null)

sizeof oid: initially holds the size of oid

This function will return the requested extension OID in the certificate. The extension
OID will be stored as a string in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned. If you have reached the last extension available GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE will be returned.

gnutls x509 crt get fingerprint

[Function]int gnutls_x509_crt_get_fingerprint (gnutls x509 crt t cert ,
gnutls digest algorithm t algo , void * buf , size t * sizeof_buf)

cert: should contain a gnutls_x509_crt_t structure

algo: is a digest algorithm

buf : a pointer to a structure to hold the fingerprint (may be null)

sizeof buf : initially holds the size of buf

This function will calculate and copy the certificate’s fingerprint in the provided buffer.

If the buffer is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *sizeof buf will be updated with the required size. On success 0
is returned.

gnutls x509 crt get issuer alt name2

[Function]int gnutls_x509_crt_get_issuer_alt_name2 (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
ret_type , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

ret type: holds the type of the alternative name (one of gnutls x509 subject alt name t).

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the alternative names, contained in the given certificate. It
is the same as gnutls_x509_crt_get_issuer_alt_name() except for the fact that
it will return the type of the alternative name in ret_type even if the function fails
for some reason (i.e. the buffer provided is not enough).

Chapter 9: Function Reference 253

Returns: the alternative issuer name type on success, one of the enumerated gnutls_

x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_BUFFER if ret_
size is not large enough to hold the value. In that case ret_size will be updated
with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

Since: 2.10.0

gnutls x509 crt get issuer alt name

[Function]int gnutls_x509_crt_get_issuer_alt_name (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

critical: will be non zero if the extension is marked as critical (may be null)

This function retrieves the Issuer Alternative Name (2.5.29.18), contained in the given
certificate in the X509v3 Certificate Extensions.

When the SAN type is otherName, it will extract the data in the otherName’s value
field, and GNUTLS_SAN_OTHERNAME is returned. You may use gnutls_x509_crt_get_
subject_alt_othername_oid() to get the corresponding OID and the "virtual" SAN
types (e.g., GNUTLS_SAN_OTHERNAME_XMPP).

If an otherName OID is known, the data will be decoded. Otherwise the returned
data will be DER encoded, and you will have to decode it yourself. Currently, only
the RFC 3920 id-on-xmppAddr Issuer AltName is recognized.

Returns: the alternative issuer name type on success, one of the enumerated gnutls_

x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_BUFFER if ret_
size is not large enough to hold the value. In that case ret_size will be updated
with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

Since: 2.10.0

gnutls x509 crt get issuer alt othername oid

[Function]int gnutls_x509_crt_get_issuer_alt_othername_oid
(gnutls x509 crt t cert , unsigned int seq , void * ret , size t * ret_size)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the otherName OID will be copied to

ret size: holds the size of ret.

Chapter 9: Function Reference 254

This function will extract the type OID of an otherName Subject Alternative Name,
contained in the given certificate, and return the type as an enumerated element.

This function is only useful if gnutls_x509_crt_get_issuer_alt_name() returned
GNUTLS_SAN_OTHERNAME.

Returns: the alternative issuer name type on success, one of the enumerated
gnutls x509 subject alt name t. For supported OIDs, it will return one of the virtual
(GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_XMPP,
and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_SHORT_

MEMORY_BUFFER if ret_size is not large enough to hold the value. In that case
ret_size will be updated with the required size. If the certificate does not have an
Alternative name with the specified sequence number and with the otherName type
then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Since: 2.10.0

gnutls x509 crt get issuer dn by oid

[Function]int gnutls_x509_crt_get_issuer_dn_by_oid (gnutls x509 crt t
cert , const char * oid , int indx , unsigned int raw_flag , void * buf , size t
* sizeof_buf)

cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
zero to get the first one.

raw flag : If non zero returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

This function will extract the part of the name of the Certificate issuer specified by
the given OID. The output, if the raw flag is not used, will be encoded as described
in RFC2253. Thus a string that is ASCII or UTF-8 encoded, depending on the
certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag is
zero, this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

If buf is null then only the size will be filled.

Returns: GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not
long enough, and in that case the *sizeof buf will be updated with the required size.
On success 0 is returned.

gnutls x509 crt get issuer dn oid

[Function]int gnutls_x509_crt_get_issuer_dn_oid (gnutls x509 crt t cert ,
int indx , void * oid , size t * sizeof_oid)

cert: should contain a gnutls_x509_crt_t structure

indx: This specifies which OID to return. Use zero to get the first one.

Chapter 9: Function Reference 255

oid: a pointer to a buffer to hold the OID (may be null)

sizeof oid: initially holds the size of oid

This function will extract the OIDs of the name of the Certificate issuer specified by
the given index.

If oid is null then only the size will be filled.

Returns: GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not
long enough, and in that case the *sizeof oid will be updated with the required size.
On success 0 is returned.

gnutls x509 crt get issuer dn

[Function]int gnutls_x509_crt_get_issuer_dn (gnutls x509 crt t cert , char *
buf , size t * sizeof_buf)

cert: should contain a gnutls_x509_crt_t structure

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

This function will copy the name of the Certificate issuer in the provided buffer. The
name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

If buf is null then only the size will be filled.

Returns: GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not
long enough, and in that case the *sizeof buf will be updated with the required size.
On success 0 is returned.

gnutls x509 crt get issuer unique id

[Function]int gnutls_x509_crt_get_issuer_unique_id (gnutls x509 crt t
crt , char * buf , size t * sizeof_buf)

crt: Holds the certificate

buf : user allocated memory buffer, will hold the unique id

sizeof buf : size of user allocated memory buffer (on input), will hold actual size of
the unique ID on return.

This function will extract the issuerUniqueID value (if present) for the given certifi-
cate.

If the user allocated memory buffer is not large enough to hold the full subjectU-
niqueID, then a GNUTLS E SHORT MEMORY BUFFER error will be returned,
and sizeof buf will be set to the actual length.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

gnutls x509 crt get issuer

[Function]int gnutls_x509_crt_get_issuer (gnutls x509 crt t cert ,
gnutls x509 dn t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: output variable with pointer to opaque DN

Chapter 9: Function Reference 256

Return the Certificate’s Issuer DN as an opaque data type. You may use gnutls_

x509_dn_get_rdn_ava() to decode the DN.

Note that dn should be treated as constant. Because points into the cert object, you
may not deallocate cert and continue to access dn.

Returns: Returns 0 on success, or an error code.

gnutls x509 crt get key id

[Function]int gnutls_x509_crt_get_key_id (gnutls x509 crt t crt , unsigned
int flags , unsigned char * output_data , size t * output_data_size)

crt: Holds the certificate

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls x509 crt get key purpose oid

[Function]int gnutls_x509_crt_get_key_purpose_oid (gnutls x509 crt t
cert , int indx , void * oid , size t * sizeof_oid , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

indx: This specifies which OID to return. Use zero to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

sizeof oid: initially holds the size of oid

critical: output flag to indicate criticality of extension

This function will extract the key purpose OIDs of the Certificate specified by the
given index. These are stored in the Extended Key Usage extension (2.5.29.37) See
the GNUTLS KP * definitions for human readable names.

If oid is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *sizeof oid will be updated with the required size. On success 0
is returned.

gnutls x509 crt get key usage

[Function]int gnutls_x509_crt_get_key_usage (gnutls x509 crt t cert ,
unsigned int * key_usage , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

key usage: where the key usage bits will be stored

Chapter 9: Function Reference 257

critical: will be non zero if the extension is marked as critical

This function will return certificate’s key usage, by reading the keyUsage
X.509 extension (2.5.29.15). The key usage value will ORed values of
the: GNUTLS_KEY_DIGITAL_SIGNATURE, GNUTLS_KEY_NON_REPUDIATION,
GNUTLS_KEY_KEY_ENCIPHERMENT, GNUTLS_KEY_DATA_ENCIPHERMENT, GNUTLS_

KEY_KEY_AGREEMENT, GNUTLS_KEY_KEY_CERT_SIGN, GNUTLS_KEY_CRL_SIGN,
GNUTLS_KEY_ENCIPHER_ONLY, GNUTLS_KEY_DECIPHER_ONLY.

Returns: the certificate key usage, or a negative value in case of parsing error. If
the certificate does not contain the keyUsage extension GNUTLS_E_REQUESTED_DATA_

NOT_AVAILABLE will be returned.

gnutls x509 crt get pk algorithm

[Function]int gnutls_x509_crt_get_pk_algorithm (gnutls x509 crt t cert ,
unsigned int * bits)

cert: should contain a gnutls_x509_crt_t structure

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an X.509 certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative value on error.

gnutls x509 crt get pk dsa raw

[Function]int gnutls_x509_crt_get_pk_dsa_raw (gnutls x509 crt t crt ,
gnutls datum t * p , gnutls datum t * q , gnutls datum t * g , gnutls datum t
* y)

crt: Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

gnutls x509 crt get pk rsa raw

[Function]int gnutls_x509_crt_get_pk_rsa_raw (gnutls x509 crt t crt ,
gnutls datum t * m , gnutls datum t * e)

crt: Holds the certificate

m: will hold the modulus

Chapter 9: Function Reference 258

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

gnutls x509 crt get preferred hash algorithm

[Function]int gnutls_x509_crt_get_preferred_hash_algorithm
(gnutls x509 crt t crt , gnutls digest algorithm t * hash , unsigned int *
mand)

crt: Holds the certificate

hash: The result of the call with the hash algorithm used for signature

mand: If non zero it means that the algorithm MUST use this hash. May be NULL.

This function will read the certifcate and return the appropriate digest algorithm to
use for signing with this certificate. Some certificates (i.e. DSA might not be able to
sign without the preferred algorithm).

Deprecated: Please use gnutls_pubkey_get_preferred_hash_algorithm().

Returns: the 0 if the hash algorithm is found. A negative value is returned on error.

Since: 2.11.0

gnutls x509 crt get proxy

[Function]int gnutls_x509_crt_get_proxy (gnutls x509 crt t cert , unsigned
int * critical , int * pathlen , char ** policyLanguage , char ** policy ,
size t * sizeof_policy)

cert: should contain a gnutls_x509_crt_t structure

critical: will be non zero if the extension is marked as critical

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative values indicate a present pCPathLenConstraint field and the actual value,
-1 indicate that the field is absent.

policyLanguage: output variable with OID of policy language

policy : output variable with policy data

sizeof policy : output variable size of policy data

This function will get information from a proxy certificate. It reads the ProxyCertInfo
X.509 extension (1.3.6.1.5.5.7.1.14).

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls x509 crt get raw dn

[Function]int gnutls_x509_crt_get_raw_dn (gnutls x509 crt t cert ,
gnutls datum t * start)

cert: should contain a gnutls_x509_crt_t structure

start: will hold the starting point of the DN

Chapter 9: Function Reference 259

This function will return a pointer to the DER encoded DN structure and the length.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
or a negative value on error.

gnutls x509 crt get raw issuer dn

[Function]int gnutls_x509_crt_get_raw_issuer_dn (gnutls x509 crt t cert ,
gnutls datum t * start)

cert: should contain a gnutls_x509_crt_t structure

start: will hold the starting point of the DN

This function will return a pointer to the DER encoded DN structure and the length.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error
value.or a negative value on error.

gnutls x509 crt get serial

[Function]int gnutls_x509_crt_get_serial (gnutls x509 crt t cert , void *
result , size t * result_size)

cert: should contain a gnutls_x509_crt_t structure

result: The place where the serial number will be copied

result size: Holds the size of the result field.

This function will return the X.509 certificate’s serial number. This is obtained by
the X509 Certificate serialNumber field. Serial is not always a 32 or 64bit number.
Some CAs use large serial numbers, thus it may be wise to handle it as something
opaque.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt get signature algorithm

[Function]int gnutls_x509_crt_get_signature_algorithm (gnutls x509 crt t
cert)

cert: should contain a gnutls_x509_crt_t structure

This function will return a value of the gnutls_sign_algorithm_t enumeration that
is the signature algorithm that has been used to sign this certificate.

Returns: a gnutls_sign_algorithm_t value, or a negative value on error.

gnutls x509 crt get signature

[Function]int gnutls_x509_crt_get_signature (gnutls x509 crt t cert , char *
sig , size t * sizeof_sig)

cert: should contain a gnutls_x509_crt_t structure

sig : a pointer where the signature part will be copied (may be null).

sizeof sig : initially holds the size of sig

This function will extract the signature field of a certificate.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.
and a negative value on error.

Chapter 9: Function Reference 260

gnutls x509 crt get subject alt name2

[Function]int gnutls_x509_crt_get_subject_alt_name2 (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
ret_type , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

ret type: holds the type of the alternative name (one of gnutls x509 subject alt name t).

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the alternative names, contained in the given certificate. It
is the same as gnutls_x509_crt_get_subject_alt_name() except for the fact that
it will return the type of the alternative name in ret_type even if the function fails
for some reason (i.e. the buffer provided is not enough).

Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_BUFFER

if ret_size is not large enough to hold the value. In that case ret_size will be up-
dated with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

gnutls x509 crt get subject alt name

[Function]int gnutls_x509_crt_get_subject_alt_name (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

critical: will be non zero if the extension is marked as critical (may be null)

This function retrieves the Alternative Name (2.5.29.17), contained in the given cer-
tificate in the X509v3 Certificate Extensions.

When the SAN type is otherName, it will extract the data in the otherName’s value
field, and GNUTLS_SAN_OTHERNAME is returned. You may use gnutls_x509_crt_get_
subject_alt_othername_oid() to get the corresponding OID and the "virtual" SAN
types (e.g., GNUTLS_SAN_OTHERNAME_XMPP).

If an otherName OID is known, the data will be decoded. Otherwise the returned
data will be DER encoded, and you will have to decode it yourself. Currently, only
the RFC 3920 id-on-xmppAddr SAN is recognized.

Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_BUFFER

Chapter 9: Function Reference 261

if ret_size is not large enough to hold the value. In that case ret_size will be up-
dated with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

gnutls x509 crt get subject alt othername oid

[Function]int gnutls_x509_crt_get_subject_alt_othername_oid
(gnutls x509 crt t cert , unsigned int seq , void * ret , size t * ret_size)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the otherName OID will be copied to

ret size: holds the size of ret.

This function will extract the type OID of an otherName Subject Alternative Name,
contained in the given certificate, and return the type as an enumerated element.

This function is only useful if gnutls_x509_crt_get_subject_alt_name() returned
GNUTLS_SAN_OTHERNAME.

Returns: the alternative subject name type on success, one of the enumerated
gnutls x509 subject alt name t. For supported OIDs, it will return one of the virtual
(GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_XMPP,
and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_SHORT_

MEMORY_BUFFER if ret_size is not large enough to hold the value. In that case
ret_size will be updated with the required size. If the certificate does not have an
Alternative name with the specified sequence number and with the otherName type
then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

gnutls x509 crt get subject key id

[Function]int gnutls_x509_crt_get_subject_key_id (gnutls x509 crt t cert ,
void * ret , size t * ret_size , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

ret: The place where the identifier will be copied

ret size: Holds the size of the result field.

critical: will be non zero if the extension is marked as critical (may be null)

This function will return the X.509v3 certificate’s subject key identifier. This is
obtained by the X.509 Subject Key identifier extension field (2.5.29.14).

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt get subject unique id

[Function]int gnutls_x509_crt_get_subject_unique_id (gnutls x509 crt t
crt , char * buf , size t * sizeof_buf)

crt: Holds the certificate

buf : user allocated memory buffer, will hold the unique id

Chapter 9: Function Reference 262

sizeof buf : size of user allocated memory buffer (on input), will hold actual size of
the unique ID on return.

This function will extract the subjectUniqueID value (if present) for the given certifi-
cate.

If the user allocated memory buffer is not large enough to hold the full subjectU-
niqueID, then a GNUTLS E SHORT MEMORY BUFFER error will be returned,
and sizeof buf will be set to the actual length.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

gnutls x509 crt get subject

[Function]int gnutls_x509_crt_get_subject (gnutls x509 crt t cert ,
gnutls x509 dn t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: output variable with pointer to opaque DN.

Return the Certificate’s Subject DN as an opaque data type. You may use gnutls_

x509_dn_get_rdn_ava() to decode the DN.

Note that dn should be treated as constant. Because points into the cert object, you
may not deallocate cert and continue to access dn.

Returns: Returns 0 on success, or an error code.

gnutls x509 crt get verify algorithm

[Function]int gnutls_x509_crt_get_verify_algorithm (gnutls x509 crt t
crt , const gnutls datum t * signature , gnutls digest algorithm t * hash)

crt: Holds the certificate

signature: contains the signature

hash: The result of the call with the hash algorithm used for signature

This function will read the certifcate and the signed data to determine the hash
algorithm used to generate the signature.

Deprecated: Use gnutls_pubkey_get_verify_algorithm() instead.

Returns: the 0 if the hash algorithm is found. A negative value is returned on error.

Since: 2.8.0

gnutls x509 crt get version

[Function]int gnutls_x509_crt_get_version (gnutls x509 crt t cert)
cert: should contain a gnutls_x509_crt_t structure

This function will return the version of the specified Certificate.

Returns: version of certificate, or a negative value on error.

Chapter 9: Function Reference 263

gnutls x509 crt import

[Function]int gnutls_x509_crt_import (gnutls x509 crt t cert , const
gnutls datum t * data , gnutls x509 crt fmt t format)

cert: The structure to store the parsed certificate.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will convert the given DER or PEM encoded Certificate to the native
gnutls x509 crt t format. The output will be stored in cert.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt init

[Function]int gnutls_x509_crt_init (gnutls x509 crt t * cert)
cert: The structure to be initialized

This function will initialize an X.509 certificate structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt list import

[Function]int gnutls_x509_crt_list_import (gnutls x509 crt t * certs ,
unsigned int * cert_max , const gnutls datum t * data , gnutls x509 crt fmt t
format , unsigned int flags)

certs: The structures to store the parsed certificate. Must not be initialized.

cert max: Initially must hold the maximum number of certs. It will be updated with
the number of certs available.

data: The PEM encoded certificate.

format: One of DER or PEM.

flags: must be zero or an OR’d sequence of gnutls certificate import flags.

This function will convert the given PEM encoded certificate list to the native
gnutls x509 crt t format. The output will be stored in certs. They will be
automatically initialized.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns: the number of certificates read or a negative error value.

gnutls x509 crt list verify

[Function]int gnutls_x509_crt_list_verify (const gnutls x509 crt t *
cert_list , int cert_list_length , const gnutls x509 crt t * CA_list , int
CA_list_length , const gnutls x509 crl t * CRL_list , int
CRL_list_length , unsigned int flags , unsigned int * verify)

cert list: is the certificate list to be verified

Chapter 9: Function Reference 264

cert list length: holds the number of certificate in cert list

CA list: is the CA list which will be used in verification

CA list length: holds the number of CA certificate in CA list

CRL list: holds a list of CRLs.

CRL list length: the length of CRL list.

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the certificate verification output.

This function will try to verify the given certificate list and return its status. If no
flags are specified (0), this function will use the basicConstraints (2.5.29.19) PKIX
extension. This means that only a certificate authority is allowed to sign a certificate.

You must also check the peer’s name in order to check if the verified certificate belongs
to the actual peer.

The certificate verification output will be put in verify and will be one or more of
the gnutls certificate status t enumerated elements bitwise or’d. For a more detailed
verification status use gnutls_x509_crt_verify() per list element.

GNUTLS CERT INVALID: the certificate chain is not valid.

GNUTLS CERT REVOKED: a certificate in the chain has been revoked.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt print

[Function]int gnutls_x509_crt_print (gnutls x509 crt t cert ,
gnutls certificate print formats t format , gnutls datum t * out)

cert: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with zero terminated string.

This function will pretty print a X.509 certificate, suitable for display to a human.

If the format is GNUTLS_CRT_PRINT_FULL then all fields of the certificate will be
output, on multiple lines. The GNUTLS_CRT_PRINT_ONELINE format will generate
one line with some selected fields, which is useful for logging purposes.

The output out needs to be deallocate using gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt privkey sign

[Function]int gnutls_x509_crt_privkey_sign (gnutls x509 crt t crt ,
gnutls x509 crt t issuer , gnutls privkey t issuer_key ,
gnutls digest algorithm t dig , unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use, GNUTLS_DIG_SHA1 is a safe choice

Chapter 9: Function Reference 265

flags: must be 0

This function will sign the certificate with the issuer’s private key, and will copy the
issuer’s information into the certificate.

This must be the last step in a certificate generation since all the previously set
parameters are now signed.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set activation time

[Function]int gnutls_x509_crt_set_activation_time (gnutls x509 crt t
cert , time t act_time)

cert: a certificate of type gnutls_x509_crt_t

act time: The actual time

This function will set the time this Certificate was or will be activated.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set authority key id

[Function]int gnutls_x509_crt_set_authority_key_id (gnutls x509 crt t
cert , const void * id , size t id_size)

cert: a certificate of type gnutls_x509_crt_t

id: The key ID

id size: Holds the size of the serial field.

This function will set the X.509 certificate’s authority key ID extension. Only the
keyIdentifier field can be set with this function.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set basic constraints

[Function]int gnutls_x509_crt_set_basic_constraints (gnutls x509 crt t
crt , unsigned int ca , int pathLenConstraint)

crt: a certificate of type gnutls_x509_crt_t

ca: true(1) or false(0). Depending on the Certificate authority status.

pathLenConstraint: non-negative values indicate maximum length of path, and neg-
ative values indicate that the pathLenConstraints field should not be present.

This function will set the basicConstraints certificate extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set ca status

[Function]int gnutls_x509_crt_set_ca_status (gnutls x509 crt t crt ,
unsigned int ca)

crt: a certificate of type gnutls_x509_crt_t

ca: true(1) or false(0). Depending on the Certificate authority status.

Chapter 9: Function Reference 266

This function will set the basicConstraints certificate extension. Use gnutls_x509_

crt_set_basic_constraints() if you want to control the pathLenConstraint field
too.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set crl dist points2

[Function]int gnutls_x509_crt_set_crl_dist_points2 (gnutls x509 crt t
crt , gnutls x509 subject alt name t type , const void * data , unsigned int
data_size , unsigned int reason_flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data: The data to be set

data size: The data size

reason flags: revocation reasons

This function will set the CRL distribution points certificate extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.6.0

gnutls x509 crt set crl dist points

[Function]int gnutls_x509_crt_set_crl_dist_points (gnutls x509 crt t crt ,
gnutls x509 subject alt name t type , const void * data_string , unsigned
int reason_flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data string : The data to be set

reason flags: revocation reasons

This function will set the CRL distribution points certificate extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set crq extensions

[Function]int gnutls_x509_crt_set_crq_extensions (gnutls x509 crt t crt ,
gnutls x509 crq t crq)

crt: a certificate of type gnutls_x509_crt_t

crq: holds a certificate request

This function will set extensions from the given request to the certificate.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.8.0

Chapter 9: Function Reference 267

gnutls x509 crt set crq

[Function]int gnutls_x509_crt_set_crq (gnutls x509 crt t crt ,
gnutls x509 crq t crq)

crt: a certificate of type gnutls_x509_crt_t

crq: holds a certificate request

This function will set the name and public parameters as well as the extensions from
the given certificate request to the certificate. Only RSA keys are currently supported.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set dn by oid

[Function]int gnutls_x509_crt_set_dn_by_oid (gnutls x509 crt t crt , const
char * oid , unsigned int raw_flag , const void * name , unsigned int
sizeof_name)

crt: a certificate of type gnutls_x509_crt_t

oid: holds an Object Identifier in a null terminated string

raw flag : must be 0, or 1 if the data are DER encoded

name: a pointer to the name

sizeof name: holds the size of name

This function will set the part of the name of the Certificate subject, specified by the
given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw_flag set.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set expiration time

[Function]int gnutls_x509_crt_set_expiration_time (gnutls x509 crt t
cert , time t exp_time)

cert: a certificate of type gnutls_x509_crt_t

exp time: The actual time

This function will set the time this Certificate will expire.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set extension by oid

[Function]int gnutls_x509_crt_set_extension_by_oid (gnutls x509 crt t
crt , const char * oid , const void * buf , size t sizeof_buf , unsigned int
critical)

crt: a certificate of type gnutls_x509_crt_t

oid: holds an Object Identified in null terminated string

buf : a pointer to a DER encoded data

Chapter 9: Function Reference 268

sizeof buf : holds the size of buf

critical: should be non zero if the extension is to be marked as critical

This function will set an the extension, by the specified OID, in the certificate. The
extension data should be binary data DER encoded.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set issuer dn by oid

[Function]int gnutls_x509_crt_set_issuer_dn_by_oid (gnutls x509 crt t
crt , const char * oid , unsigned int raw_flag , const void * name , unsigned
int sizeof_name)

crt: a certificate of type gnutls_x509_crt_t

oid: holds an Object Identifier in a null terminated string

raw flag : must be 0, or 1 if the data are DER encoded

name: a pointer to the name

sizeof name: holds the size of name

This function will set the part of the name of the Certificate issuer, specified by the
given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw_flag set.

Normally you do not need to call this function, since the signing operation will copy
the signer’s name as the issuer of the certificate.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set key purpose oid

[Function]int gnutls_x509_crt_set_key_purpose_oid (gnutls x509 crt t
cert , const void * oid , unsigned int critical)

cert: a certificate of type gnutls_x509_crt_t

oid: a pointer to a null terminated string that holds the OID

critical: Whether this extension will be critical or not

This function will set the key purpose OIDs of the Certificate. These are stored in
the Extended Key Usage extension (2.5.29.37) See the GNUTLS KP * definitions for
human readable names.

Subsequent calls to this function will append OIDs to the OID list.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

Chapter 9: Function Reference 269

gnutls x509 crt set key usage

[Function]int gnutls_x509_crt_set_key_usage (gnutls x509 crt t crt ,
unsigned int usage)

crt: a certificate of type gnutls_x509_crt_t

usage: an ORed sequence of the GNUTLS KEY * elements.

This function will set the keyUsage certificate extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set key

[Function]int gnutls_x509_crt_set_key (gnutls x509 crt t crt ,
gnutls x509 privkey t key)

crt: a certificate of type gnutls_x509_crt_t

key : holds a private key

This function will set the public parameters from the given private key to the certifi-
cate. Only RSA keys are currently supported.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set proxy dn

[Function]int gnutls_x509_crt_set_proxy_dn (gnutls x509 crt t crt ,
gnutls x509 crt t eecrt , unsigned int raw_flag , const void * name , unsigned
int sizeof_name)

crt: a gnutls x509 crt t structure with the new proxy cert

eecrt: the end entity certificate that will be issuing the proxy

raw flag : must be 0, or 1 if the CN is DER encoded

name: a pointer to the CN name, may be NULL (but MUST then be added later)

sizeof name: holds the size of name

This function will set the subject in crt to the end entity’s eecrt subject name, and
add a single Common Name component name of size sizeof_name. This corresponds
to the required proxy certificate naming style. Note that if name is NULL, you MUST
set it later by using gnutls_x509_crt_set_dn_by_oid() or similar.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set proxy

[Function]int gnutls_x509_crt_set_proxy (gnutls x509 crt t crt , int
pathLenConstraint , const char * policyLanguage , const char * policy ,
size t sizeof_policy)

crt: a certificate of type gnutls_x509_crt_t

pathLenConstraint: non-negative values indicate maximum length of path, and neg-
ative values indicate that the pathLenConstraints field should not be present.

policyLanguage: OID describing the language of policy.

policy : opaque byte array with policy language, can be NULL

Chapter 9: Function Reference 270

sizeof policy : size of policy.

This function will set the proxyCertInfo extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set serial

[Function]int gnutls_x509_crt_set_serial (gnutls x509 crt t cert , const void
* serial , size t serial_size)

cert: a certificate of type gnutls_x509_crt_t

serial: The serial number

serial size: Holds the size of the serial field.

This function will set the X.509 certificate’s serial number. Serial is not always a 32
or 64bit number. Some CAs use large serial numbers, thus it may be wise to handle
it as something opaque.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set subject alt name

[Function]int gnutls_x509_crt_set_subject_alt_name (gnutls x509 crt t
crt , gnutls x509 subject alt name t type , const void * data , unsigned int
data_size , unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data: The data to be set

data size: The size of data to be set

flags: GNUTLS FSAN SET to clear previous data or GNUTLS FSAN APPEND to
append.

This function will set the subject alternative name certificate extension. It can set
the following types:

&GNUTLS SAN DNSNAME: as a text string

&GNUTLS SAN RFC822NAME: as a text string

&GNUTLS SAN URI: as a text string

&GNUTLS SAN IPADDRESS: as a binary IP address (4 or 16 bytes)

Other values can be set as binary values with the proper DER encoding.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.6.0

gnutls x509 crt set subject alternative name

[Function]int gnutls_x509_crt_set_subject_alternative_name
(gnutls x509 crt t crt , gnutls x509 subject alt name t type , const char *
data_string)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

Chapter 9: Function Reference 271

data string : The data to be set, a zero terminated string

This function will set the subject alternative name certificate extension. This function
assumes that data can be expressed as a null terminated string.

The name of the function is unfortunate since it is incosistent with gnutls_x509_

crt_get_subject_alt_name().

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set subject key id

[Function]int gnutls_x509_crt_set_subject_key_id (gnutls x509 crt t cert ,
const void * id , size t id_size)

cert: a certificate of type gnutls_x509_crt_t

id: The key ID

id size: Holds the size of the serial field.

This function will set the X.509 certificate’s subject key ID extension.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt set version

[Function]int gnutls_x509_crt_set_version (gnutls x509 crt t crt , unsigned
int version)

crt: a certificate of type gnutls_x509_crt_t

version: holds the version number. For X.509v1 certificates must be 1.

This function will set the version of the certificate. This must be one for X.509 version
1, and so on. Plain certificates without extensions must have version set to one.

To create well-formed certificates, you must specify version 3 if you use any certifi-
cate extensions. Extensions are created by functions such as gnutls_x509_crt_set_
subject_alt_name() or gnutls_x509_crt_set_key_usage().

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt sign2

[Function]int gnutls_x509_crt_sign2 (gnutls x509 crt t crt , gnutls x509 crt t
issuer , gnutls x509 privkey t issuer_key , gnutls digest algorithm t dig ,
unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use, GNUTLS_DIG_SHA1 is a safe choice

flags: must be 0

This function will sign the certificate with the issuer’s private key, and will copy the
issuer’s information into the certificate.

This must be the last step in a certificate generation since all the previously set
parameters are now signed.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 272

gnutls x509 crt sign

[Function]int gnutls_x509_crt_sign (gnutls x509 crt t crt , gnutls x509 crt t
issuer , gnutls x509 privkey t issuer_key)

crt: a certificate of type gnutls_x509_crt_t

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

This function is the same a gnutls_x509_crt_sign2() with no flags, and SHA1 as
the hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 crt verify data

[Function]int gnutls_x509_crt_verify_data (gnutls x509 crt t crt , unsigned
int flags , const gnutls datum t * data , const gnutls datum t * signature)

crt: Holds the certificate

flags: should be 0 for now

data: holds the data to be signed

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Deprecated. Please use gnutls_pubkey_verify_data().

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and a positive code on success.

gnutls x509 crt verify hash

[Function]int gnutls_x509_crt_verify_hash (gnutls x509 crt t crt , unsigned
int flags , const gnutls datum t * hash , const gnutls datum t * signature)

crt: Holds the certificate

flags: should be 0 for now

hash: holds the hash digest to be verified

signature: contains the signature

This function will verify the given signed digest, using the parameters from the cer-
tificate.

Deprecated. Please use gnutls_pubkey_verify_data().

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and a positive code on success.

gnutls x509 crt verify

[Function]int gnutls_x509_crt_verify (gnutls x509 crt t cert , const
gnutls x509 crt t * CA_list , int CA_list_length , unsigned int flags ,
unsigned int * verify)

cert: is the certificate to be verified

Chapter 9: Function Reference 273

CA list: is one certificate that is considered to be trusted one

CA list length: holds the number of CA certificate in CA list

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the certificate verification output.

This function will try to verify the given certificate and return its status.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 dn deinit

[Function]void gnutls_x509_dn_deinit (gnutls x509 dn t dn)
dn: a DN opaque object pointer.

This function deallocates the DN object as returned by gnutls_x509_dn_import().

Since: 2.4.0

gnutls x509 dn export

[Function]int gnutls_x509_dn_export (gnutls x509 dn t dn ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

dn: Holds the opaque DN object

format: the format of output params. One of PEM or DER.

output data: will contain a DN PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the DN to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output_data_size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN NAME".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 dn get rdn ava

[Function]int gnutls_x509_dn_get_rdn_ava (gnutls x509 dn t dn , int irdn ,
int iava , gnutls x509 ava st * ava)

dn: input variable with opaque DN pointer

irdn: index of RDN

iava: index of AVA.

ava: Pointer to structure which will hold output information.

Get pointers to data within the DN.

Note that ava will contain pointers into the dn structure, so you should not modify
any data or deallocate it. Note also that the DN in turn points into the original
certificate structure, and thus you may not deallocate the certificate and continue to
access dn.

Returns: Returns 0 on success, or an error code.

Chapter 9: Function Reference 274

gnutls x509 dn import

[Function]int gnutls_x509_dn_import (gnutls x509 dn t dn , const
gnutls datum t * data)

dn: the structure that will hold the imported DN

data: should contain a DER encoded RDN sequence

This function parses an RDN sequence and stores the result to a gnutls_x509_dn_t

structure. The structure must have been initialized with gnutls_x509_dn_init().
You may use gnutls_x509_dn_get_rdn_ava() to decode the DN.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.4.0

gnutls x509 dn init

[Function]int gnutls_x509_dn_init (gnutls x509 dn t * dn)
dn: the object to be initialized

This function initializes a gnutls_x509_dn_t structure.

The object returned must be deallocated using gnutls_x509_dn_deinit().

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.4.0

gnutls x509 dn oid known

[Function]int gnutls_x509_dn_oid_known (const char * oid)
oid: holds an Object Identifier in a null terminated string

This function will inform about known DN OIDs. This is useful since functions like
gnutls_x509_crt_set_dn_by_oid() use the information on known OIDs to properly
encode their input. Object Identifiers that are not known are not encoded by these
functions, and their input is stored directly into the ASN.1 structure. In that case of
unknown OIDs, you have the responsibility of DER encoding your data.

Returns: 1 on known OIDs and 0 otherwise.

gnutls x509 privkey cpy

[Function]int gnutls_x509_privkey_cpy (gnutls x509 privkey t dst ,
gnutls x509 privkey t src)

dst: The destination key, which should be initialized.

src: The source key

This function will copy a private key from source to destination key. Destination has
to be initialized.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey deinit

[Function]void gnutls_x509_privkey_deinit (gnutls x509 privkey t key)
key : The structure to be deinitialized

This function will deinitialize a private key structure.

Chapter 9: Function Reference 275

gnutls x509 privkey export dsa raw

[Function]int gnutls_x509_privkey_export_dsa_raw (gnutls x509 privkey t
key , gnutls datum t * p , gnutls datum t * q , gnutls datum t * g ,
gnutls datum t * y , gnutls datum t * x)

key : a structure that holds the DSA parameters

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

x: will hold the x

This function will export the DSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey export pkcs8

[Function]int gnutls_x509_privkey_export_pkcs8 (gnutls x509 privkey t
key , gnutls x509 crt fmt t format , const char * password , unsigned int
flags , void * output_data , size t * output_data_size)

key : Holds the key

format: the format of output params. One of PEM or DER.

password: the password that will be used to encrypt the key.

flags: an ORed sequence of gnutls pkcs encrypt flags t

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the private key to a PKCS8 structure. Both RSA and DSA
keys can be exported. For DSA keys we use PKCS 11 definitions. If the flags do not
specify the encryption cipher, then the default 3DES (PBES2) will be used.

The password can be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN ENCRYPTED
PRIVATE KEY" or "BEGIN PRIVATE KEY" if encryption is not used.

Return value: In case of failure a negative value will be returned, and 0 on success.

gnutls x509 privkey export rsa raw2

[Function]int gnutls_x509_privkey_export_rsa_raw2 (gnutls x509 privkey t
key , gnutls datum t * m , gnutls datum t * e , gnutls datum t * d ,
gnutls datum t * p , gnutls datum t * q , gnutls datum t * u , gnutls datum t
* e1 , gnutls datum t * e2)

key : a structure that holds the rsa parameters

Chapter 9: Function Reference 276

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

e1: will hold e1 = d mod (p-1)

e2: will hold e2 = d mod (q-1)

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey export rsa raw

[Function]int gnutls_x509_privkey_export_rsa_raw (gnutls x509 privkey t
key , gnutls datum t * m , gnutls datum t * e , gnutls datum t * d ,
gnutls datum t * p , gnutls datum t * q , gnutls datum t * u)

key : a structure that holds the rsa parameters

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey export

[Function]int gnutls_x509_privkey_export (gnutls x509 privkey t key ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

key : Holds the key

format: the format of output params. One of PEM or DER.

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the private key to a PKCS1 structure for RSA keys, or
an integer sequence for DSA keys. The DSA keys are in the same format with the
parameters used by openssl.

Chapter 9: Function Reference 277

If the buffer provided is not long enough to hold the output, then *output_data_size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey fix

[Function]int gnutls_x509_privkey_fix (gnutls x509 privkey t key)
key : Holds the key

This function will recalculate the secondary parameters in a key. In RSA keys, this
can be the coefficient and exponent1,2.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey generate

[Function]int gnutls_x509_privkey_generate (gnutls x509 privkey t key ,
gnutls pk algorithm t algo , unsigned int bits , unsigned int flags)

key : should contain a gnutls_x509_privkey_t structure

algo: is one of RSA or DSA.

bits: the size of the modulus

flags: unused for now. Must be 0.

This function will generate a random private key. Note that this function must be
called on an empty private key.

Do not set the number of bits directly, use gnutls_sec_param_to_pk_bits().

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey get key id

[Function]int gnutls_x509_privkey_get_key_id (gnutls x509 privkey t key ,
unsigned int flags , unsigned char * output_data , size t *
output_data_size)

key : Holds the key

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given key.

If the buffer provided is not long enough to hold the output, then *output_data_size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output will
normally be a SHA-1 hash output, which is 20 bytes.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 278

gnutls x509 privkey get pk algorithm

[Function]int gnutls_x509_privkey_get_pk_algorithm (gnutls x509 privkey t
key)

key : should contain a gnutls_x509_privkey_t structure

This function will return the public key algorithm of a private key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative value on error.

gnutls x509 privkey import dsa raw

[Function]int gnutls_x509_privkey_import_dsa_raw (gnutls x509 privkey t
key , const gnutls datum t * p , const gnutls datum t * q , const
gnutls datum t * g , const gnutls datum t * y , const gnutls datum t * x)

key : The structure to store the parsed key

p: holds the p

q: holds the q

g : holds the g

y : holds the y

x: holds the x

This function will convert the given DSA raw parameters to the native gnutls_x509_
privkey_t format. The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey import pkcs8

[Function]int gnutls_x509_privkey_import_pkcs8 (gnutls x509 privkey t
key , const gnutls datum t * data , gnutls x509 crt fmt t format , const char
* password , unsigned int flags)

key : The structure to store the parsed key

data: The DER or PEM encoded key.

format: One of DER or PEM

password: the password to decrypt the key (if it is encrypted).

flags: 0 if encrypted or GNUTLS PKCS PLAIN if not encrypted.

This function will convert the given DER or PEM encoded PKCS8 2.0 encrypted
key to the native gnutls x509 privkey t format. The output will be stored in key.
Both RSA and DSA keys can be imported, and flags can only be used to indicate an
unencrypted key.

The password can be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.

If the Certificate is PEM encoded it should have a header of "ENCRYPTED PRI-
VATE KEY", or "PRIVATE KEY". You only need to specify the flags if the key is
DER encoded, since in that case the encryption status cannot be auto-detected.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 279

gnutls x509 privkey import rsa raw2

[Function]int gnutls_x509_privkey_import_rsa_raw2 (gnutls x509 privkey t
key , const gnutls datum t * m , const gnutls datum t * e , const
gnutls datum t * d , const gnutls datum t * p , const gnutls datum t * q , const
gnutls datum t * u , const gnutls datum t * e1 , const gnutls datum t * e2)

key : The structure to store the parsed key

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient

e1: holds e1 = d mod (p-1)

e2: holds e2 = d mod (q-1)

This function will convert the given RSA raw parameters to the native gnutls_x509_
privkey_t format. The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey import rsa raw

[Function]int gnutls_x509_privkey_import_rsa_raw (gnutls x509 privkey t
key , const gnutls datum t * m , const gnutls datum t * e , const
gnutls datum t * d , const gnutls datum t * p , const gnutls datum t * q , const
gnutls datum t * u)

key : The structure to store the parsed key

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient

This function will convert the given RSA raw parameters to the native gnutls_x509_
privkey_t format. The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey import

[Function]int gnutls_x509_privkey_import (gnutls x509 privkey t key , const
gnutls datum t * data , gnutls x509 crt fmt t format)

key : The structure to store the parsed key

data: The DER or PEM encoded certificate.

format: One of DER or PEM

Chapter 9: Function Reference 280

This function will convert the given DER or PEM encoded key to the native gnutls_
x509_privkey_t format. The output will be stored in key .

If the key is PEM encoded it should have a header of "RSA PRIVATE KEY", or
"DSA PRIVATE KEY".

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey init

[Function]int gnutls_x509_privkey_init (gnutls x509 privkey t * key)
key : The structure to be initialized

This function will initialize an private key structure.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls x509 privkey sec param

[Function]gnutls_sec_param_t gnutls_x509_privkey_sec_param
(gnutls x509 privkey t key)

key : a key structure

This function will return the security parameter appropriate with this private key.

Returns: On success, a valid security parameter is returned otherwise GNUTLS_SEC_

PARAM_UNKNOWN is returned.

gnutls x509 privkey sign data

[Function]int gnutls_x509_privkey_sign_data (gnutls x509 privkey t key ,
gnutls digest algorithm t digest , unsigned int flags , const gnutls datum t
* data , void * signature , size t * signature_size)

key : Holds the key

digest: should be MD5 or SHA1

flags: should be 0 for now

data: holds the data to be signed

signature: will contain the signature

signature size: holds the size of signature (and will be replaced by the new size)

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-1 for the
DSA keys.

If the buffer provided is not long enough to hold the output, then *signature_size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Use gnutls_x509_crt_get_preferred_hash_algorithm() to determine the hash al-
gorithm.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Deprecated: Use gnutls_privkey_sign_data().

Chapter 9: Function Reference 281

gnutls x509 privkey sign hash

[Function]int gnutls_x509_privkey_sign_hash (gnutls x509 privkey t key ,
const gnutls datum t * hash , gnutls datum t * signature)

key : Holds the key

hash: holds the data to be signed

signature: will contain newly allocated signature

This function will sign the given hash using the private key. Do not use this function
directly unless you know what it is. Typical signing requires the data to be hashed
and stored in special formats (e.g. BER Digest-Info for RSA).

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Deprecated in: 2.12.0

gnutls x509 privkey verify data

[Function]int gnutls_x509_privkey_verify_data (gnutls x509 privkey t key ,
unsigned int flags , const gnutls datum t * data , const gnutls datum t *
signature)

key : Holds the key

flags: should be 0 for now

data: holds the data to be signed

signature: contains the signature

This function will verify the given signed data, using the parameters in the private
key.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and a positive code on success.

Deprecated: Use gnutls_pubkey_verify_data().

gnutls x509 rdn get by oid

[Function]int gnutls_x509_rdn_get_by_oid (const gnutls datum t * idn , const
char * oid , int indx , unsigned int raw_flag , void * buf , size t *
sizeof_buf)

idn: should contain a DER encoded RDN sequence

oid: an Object Identifier

indx: In case multiple same OIDs exist in the RDN indicates which to send. Use 0
for the first one.

raw flag : If non zero then the raw DER data are returned.

buf : a pointer to a structure to hold the peer’s name

sizeof buf : holds the size of buf

This function will return the name of the given Object identifier, of the RDN sequence.
The name will be encoded using the rules from RFC2253.

Returns: On success, GNUTLS_E_SUCCESS is returned, or GNUTLS_E_SHORT_MEMORY_

BUFFER is returned and *sizeof_buf is updated if the provided buffer is not long
enough, otherwise a negative error value.

Chapter 9: Function Reference 282

gnutls x509 rdn get oid

[Function]int gnutls_x509_rdn_get_oid (const gnutls datum t * idn , int
indx , void * buf , size t * sizeof_buf)

idn: should contain a DER encoded RDN sequence

indx: Indicates which OID to return. Use 0 for the first one.

buf : a pointer to a structure to hold the peer’s name OID

sizeof buf : holds the size of buf

This function will return the specified Object identifier, of the RDN sequence.

Returns: On success, GNUTLS_E_SUCCESS is returned, or GNUTLS_E_SHORT_MEMORY_

BUFFER is returned and *sizeof_buf is updated if the provided buffer is not long
enough, otherwise a negative error value.

Since: 2.4.0

gnutls x509 rdn get

[Function]int gnutls_x509_rdn_get (const gnutls datum t * idn , char * buf ,
size t * sizeof_buf)

idn: should contain a DER encoded RDN sequence

buf : a pointer to a structure to hold the peer’s name

sizeof buf : holds the size of buf

This function will return the name of the given RDN sequence. The name will be in
the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253.

Returns: On success, GNUTLS_E_SUCCESS is returned, or GNUTLS_E_SHORT_MEMORY_

BUFFER is returned and *sizeof_buf is updated if the provided buffer is not long
enough, otherwise a negative error value.

9.3 GnuTLS-extra Functions

These functions are only available in the GPLv3+ version of the library called gnutls-extra.
The prototypes for this library lie in ‘gnutls/extra.h’.

gnutls extra check version

[Function]const char * gnutls_extra_check_version (const char *
req_version)

req version: version string to compare with, or NULL.

Check GnuTLS Extra Library version.

See GNUTLS_EXTRA_VERSION for a suitable req_version string.

Return value: Check that the version of the library is at minimum the one given as
a string in req_version and return the actual version string of the library; return
NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

Chapter 9: Function Reference 283

gnutls global init extra

[Function]int gnutls_global_init_extra (void)
This function initializes the global state of gnutls-extra library to defaults.

Note that gnutls_global_init() has to be called before this function. If this func-
tion is not called then the gnutls-extra library will not be usable.

This function is not thread safe, see the discussion for gnutls_global_init() on
how to deal with that.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

9.4 OpenPGP Functions

The following functions are to be used for OpenPGP certificate handling. Their prototypes
lie in ‘gnutls/openpgp.h’.

gnutls certificate set openpgp key file2

[Function]int gnutls_certificate_set_openpgp_key_file2
(gnutls certificate credentials t res , const char * certfile , const char *
keyfile , const char * subkey_id , gnutls openpgp crt fmt t format)

res: the destination context to save the data.

certfile: the file that contains the public key.

keyfile: the file that contains the secret key.

subkey id: a hex encoded subkey id

format: the format of the keys

This funtion is used to load OpenPGP keys into the GnuTLS credential structure.
The file should contain at least one valid non encrypted subkey.

The special keyword "auto" is also accepted as subkey_id. In that case the gnutls_
openpgp_crt_get_auth_subkey() will be used to retrieve the subkey.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.4.0

gnutls certificate set openpgp key file

[Function]int gnutls_certificate_set_openpgp_key_file
(gnutls certificate credentials t res , const char * certfile , const char *
keyfile , gnutls openpgp crt fmt t format)

res: the destination context to save the data.

certfile: the file that contains the public key.

keyfile: the file that contains the secret key.

format: the format of the keys

This funtion is used to load OpenPGP keys into the GnuTLS credentials structure.
The file should contain at least one valid non encrypted subkey.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 284

gnutls certificate set openpgp key mem2

[Function]int gnutls_certificate_set_openpgp_key_mem2
(gnutls certificate credentials t res , const gnutls datum t * cert , const
gnutls datum t * key , const char * subkey_id , gnutls openpgp crt fmt t
format)

res: the destination context to save the data.

cert: the datum that contains the public key.

key : the datum that contains the secret key.

subkey id: a hex encoded subkey id

format: the format of the keys

This funtion is used to load OpenPGP keys into the GnuTLS credentials structure.
The datum should contain at least one valid non encrypted subkey.

The special keyword "auto" is also accepted as subkey_id. In that case the gnutls_
openpgp_crt_get_auth_subkey() will be used to retrieve the subkey.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Since: 2.4.0

gnutls certificate set openpgp key mem

[Function]int gnutls_certificate_set_openpgp_key_mem
(gnutls certificate credentials t res , const gnutls datum t * cert , const
gnutls datum t * key , gnutls openpgp crt fmt t format)

res: the destination context to save the data.

cert: the datum that contains the public key.

key : the datum that contains the secret key.

format: the format of the keys

This funtion is used to load OpenPGP keys into the GnuTLS credential structure.
The datum should contain at least one valid non encrypted subkey.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls certificate set openpgp keyring file

[Function]int gnutls_certificate_set_openpgp_keyring_file
(gnutls certificate credentials t c , const char * file ,
gnutls openpgp crt fmt t format)

c: A certificate credentials structure

file: filename of the keyring.

format: format of keyring.

The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Chapter 9: Function Reference 285

gnutls certificate set openpgp keyring mem

[Function]int gnutls_certificate_set_openpgp_keyring_mem
(gnutls certificate credentials t c , const opaque * data , size t dlen ,
gnutls openpgp crt fmt t format)

c: A certificate credentials structure

data: buffer with keyring data.

dlen: length of data buffer.

format: the format of the keyring

The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

gnutls certificate set openpgp key

[Function]int gnutls_certificate_set_openpgp_key
(gnutls certificate credentials t res , gnutls openpgp crt t crt ,
gnutls openpgp privkey t pkey)

res: is a gnutls_certificate_credentials_t structure.

pkey : is an openpgp private key

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once (in case multiple
keys/certificates exist for the server).

Note that this function requires that the preferred key ids have been set and be used.
See gnutls_openpgp_crt_set_preferred_key_id(). Otherwise the master key will
be used.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls openpgp crt check hostname

[Function]int gnutls_openpgp_crt_check_hostname (gnutls openpgp crt t
key , const char * hostname)

key : should contain a gnutls_openpgp_crt_t structure

hostname: A null terminated string that contains a DNS name

This function will check if the given key’s owner matches the given hostname. This
is a basic implementation of the matching described in RFC2818 (HTTPS), which
takes into account wildcards.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt deinit

[Function]void gnutls_openpgp_crt_deinit (gnutls openpgp crt t key)
key : The structure to be initialized

This function will deinitialize a key structure.

Chapter 9: Function Reference 286

gnutls openpgp crt export

[Function]int gnutls_openpgp_crt_export (gnutls openpgp crt t key ,
gnutls openpgp crt fmt t format , void * output_data , size t *
output_data_size)

key : Holds the key.

format: One of gnutls openpgp crt fmt t elements.

output data: will contain the key base64 encoded or raw

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will convert the given key to RAW or Base64 format. If the buffer pro-
vided is not long enough to hold the output, then GNUTLS_E_SHORT_MEMORY_BUFFER

will be returned.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt get auth subkey

[Function]int gnutls_openpgp_crt_get_auth_subkey (gnutls openpgp crt t
crt , gnutls openpgp keyid t keyid , unsigned int flag)

crt: the structure that contains the OpenPGP public key.

keyid: the struct to save the keyid.

flag : Non zero indicates that a valid subkey is always returned.

Returns the 64-bit keyID of the first valid OpenPGP subkey marked for authentica-
tion. If flag is non zero and no authentication subkey exists, then a valid subkey will
be returned even if it is not marked for authentication. Returns the 64-bit keyID of
the first valid OpenPGP subkey marked for authentication. If flag is non zero and
no authentication subkey exists, then a valid subkey will be returned even if it is not
marked for authentication.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt get creation time

[Function]time_t gnutls_openpgp_crt_get_creation_time
(gnutls openpgp crt t key)

key : the structure that contains the OpenPGP public key.

Get key creation time.

Returns: the timestamp when the OpenPGP key was created.

gnutls openpgp crt get expiration time

[Function]time_t gnutls_openpgp_crt_get_expiration_time
(gnutls openpgp crt t key)

key : the structure that contains the OpenPGP public key.

Get key expiration time. A value of ’0’ means that the key doesn’t expire at all.

Returns: the time when the OpenPGP key expires.

Chapter 9: Function Reference 287

gnutls openpgp crt get fingerprint

[Function]int gnutls_openpgp_crt_get_fingerprint (gnutls openpgp crt t
key , void * fpr , size t * fprlen)

key : the raw data that contains the OpenPGP public key.

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Get key fingerprint. Depending on the algorithm, the fingerprint can be 16 or 20
bytes.

Returns: On success, 0 is returned. Otherwise, an error code.

gnutls openpgp crt get key id

[Function]int gnutls_openpgp_crt_get_key_id (gnutls openpgp crt t key ,
gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the buffer to save the keyid.

Get key id string.

Returns: the 64-bit keyID of the OpenPGP key.

Since: 2.4.0

gnutls openpgp crt get key usage

[Function]int gnutls_openpgp_crt_get_key_usage (gnutls openpgp crt t key ,
unsigned int * key_usage)

key : should contain a gnutls openpgp crt t structure

key usage: where the key usage bits will be stored

This function will return certificate’s key usage, by checking the key algorithm. The
key usage value will ORed values of the: GNUTLS_KEY_DIGITAL_SIGNATURE, GNUTLS_
KEY_KEY_ENCIPHERMENT.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt get name

[Function]int gnutls_openpgp_crt_get_name (gnutls openpgp crt t key , int
idx , char * buf , size t * sizeof_buf)

key : the structure that contains the OpenPGP public key.

idx: the index of the ID to extract

buf : a pointer to a structure to hold the name, may be NULL to only get the sizeof_
buf.

sizeof buf : holds the maximum size of buf, on return hold the actual/required size
of buf.

Extracts the userID from the parsed OpenPGP key.

Returns: GNUTLS_E_SUCCESS on success, and if the index of the ID does not exist
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE, or an error code.

Chapter 9: Function Reference 288

gnutls openpgp crt get pk algorithm

[Function]gnutls_pk_algorithm_t gnutls_openpgp_crt_get_pk_algorithm
(gnutls openpgp crt t key , unsigned int * bits)

key : is an OpenPGP key

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an OpenPGP certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or
GNUTLS PK UNKNOWN on error.

gnutls openpgp crt get pk dsa raw

[Function]int gnutls_openpgp_crt_get_pk_dsa_raw (gnutls openpgp crt t
crt , gnutls datum t * p , gnutls datum t * q , gnutls datum t * g ,
gnutls datum t * y)

crt: Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.4.0

gnutls openpgp crt get pk rsa raw

[Function]int gnutls_openpgp_crt_get_pk_rsa_raw (gnutls openpgp crt t
crt , gnutls datum t * m , gnutls datum t * e)

crt: Holds the certificate

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.4.0

Chapter 9: Function Reference 289

gnutls openpgp crt get preferred key id

[Function]int gnutls_openpgp_crt_get_preferred_key_id
(gnutls openpgp crt t key , gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the struct to save the keyid.

Get preferred key id. If it hasn’t been set it returns GNUTLS_E_INVALID_REQUEST.

Returns: the 64-bit preferred keyID of the OpenPGP key.

gnutls openpgp crt get revoked status

[Function]int gnutls_openpgp_crt_get_revoked_status
(gnutls openpgp crt t key)

key : the structure that contains the OpenPGP public key.

Get revocation status of key.

Returns: true (1) if the key has been revoked, or false (0) if it has not.

Since: 2.4.0

gnutls openpgp crt get subkey count

[Function]int gnutls_openpgp_crt_get_subkey_count (gnutls openpgp crt t
key)

key : is an OpenPGP key

This function will return the number of subkeys present in the given OpenPGP cer-
tificate.

Returns: the number of subkeys, or a negative value on error.

Since: 2.4.0

gnutls openpgp crt get subkey creation time

[Function]time_t gnutls_openpgp_crt_get_subkey_creation_time
(gnutls openpgp crt t key , unsigned int idx)

key : the structure that contains the OpenPGP public key.

idx: the subkey index

Get subkey creation time.

Returns: the timestamp when the OpenPGP sub-key was created.

Since: 2.4.0

gnutls openpgp crt get subkey expiration time

[Function]time_t gnutls_openpgp_crt_get_subkey_expiration_time
(gnutls openpgp crt t key , unsigned int idx)

key : the structure that contains the OpenPGP public key.

idx: the subkey index

Get subkey expiration time. A value of ’0’ means that the key doesn’t expire at all.

Returns: the time when the OpenPGP key expires.

Since: 2.4.0

Chapter 9: Function Reference 290

gnutls openpgp crt get subkey fingerprint

[Function]int gnutls_openpgp_crt_get_subkey_fingerprint
(gnutls openpgp crt t key , unsigned int idx , void * fpr , size t * fprlen)

key : the raw data that contains the OpenPGP public key.

idx: the subkey index

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Get key fingerprint of a subkey. Depending on the algorithm, the fingerprint can be
16 or 20 bytes.

Returns: On success, 0 is returned. Otherwise, an error code.

Since: 2.4.0

gnutls openpgp crt get subkey idx

[Function]int gnutls_openpgp_crt_get_subkey_idx (gnutls openpgp crt t
key , const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the keyid.

Get subkey’s index.

Returns: the index of the subkey or a negative error value.

Since: 2.4.0

gnutls openpgp crt get subkey id

[Function]int gnutls_openpgp_crt_get_subkey_id (gnutls openpgp crt t key ,
unsigned int idx , gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

idx: the subkey index

keyid: the buffer to save the keyid.

Get the subkey’s key-id.

Returns: the 64-bit keyID of the OpenPGP key.

gnutls openpgp crt get subkey pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_crt_get_subkey_pk_algorithm (gnutls openpgp crt t
key , unsigned int idx , unsigned int * bits)

key : is an OpenPGP key

idx: is the subkey index

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of a subkey of an OpenPGP cer-
tificate.

Chapter 9: Function Reference 291

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or
GNUTLS PK UNKNOWN on error.

Since: 2.4.0

gnutls openpgp crt get subkey pk dsa raw

[Function]int gnutls_openpgp_crt_get_subkey_pk_dsa_raw
(gnutls openpgp crt t crt , unsigned int idx , gnutls datum t * p ,
gnutls datum t * q , gnutls datum t * g , gnutls datum t * y)

crt: Holds the certificate

idx: Is the subkey index

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.4.0

gnutls openpgp crt get subkey pk rsa raw

[Function]int gnutls_openpgp_crt_get_subkey_pk_rsa_raw
(gnutls openpgp crt t crt , unsigned int idx , gnutls datum t * m ,
gnutls datum t * e)

crt: Holds the certificate

idx: Is the subkey index

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.4.0

gnutls openpgp crt get subkey revoked status

[Function]int gnutls_openpgp_crt_get_subkey_revoked_status
(gnutls openpgp crt t key , unsigned int idx)

key : the structure that contains the OpenPGP public key.

Chapter 9: Function Reference 292

idx: is the subkey index

Get subkey revocation status. A negative value indicates an error.

Returns: true (1) if the key has been revoked, or false (0) if it has not.

Since: 2.4.0

gnutls openpgp crt get subkey usage

[Function]int gnutls_openpgp_crt_get_subkey_usage (gnutls openpgp crt t
key , unsigned int idx , unsigned int * key_usage)

key : should contain a gnutls openpgp crt t structure

idx: the subkey index

key usage: where the key usage bits will be stored

This function will return certificate’s key usage, by checking the key algorithm. The
key usage value will ORed values of GNUTLS_KEY_DIGITAL_SIGNATURE or GNUTLS_

KEY_KEY_ENCIPHERMENT.

A negative value may be returned in case of parsing error.

Returns: key usage value.

Since: 2.4.0

gnutls openpgp crt get version

[Function]int gnutls_openpgp_crt_get_version (gnutls openpgp crt t key)
key : the structure that contains the OpenPGP public key.

Extract the version of the OpenPGP key.

Returns: the version number is returned, or a negative value on errors.

gnutls openpgp crt import

[Function]int gnutls_openpgp_crt_import (gnutls openpgp crt t key , const
gnutls datum t * data , gnutls openpgp crt fmt t format)

key : The structure to store the parsed key.

data: The RAW or BASE64 encoded key.

format: One of gnutls openpgp crt fmt t elements.

This function will convert the given RAW or Base64 encoded key to the native
gnutls_openpgp_crt_t format. The output will be stored in ’key’.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt init

[Function]int gnutls_openpgp_crt_init (gnutls openpgp crt t * key)
key : The structure to be initialized

This function will initialize an OpenPGP key structure.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Chapter 9: Function Reference 293

gnutls openpgp crt print

[Function]int gnutls_openpgp_crt_print (gnutls openpgp crt t cert ,
gnutls certificate print formats t format , gnutls datum t * out)

cert: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with zero terminated string.

This function will pretty print an OpenPGP certificate, suitable for display to a
human.

The format should be zero for future compatibility.

The output out needs to be deallocate using gnutls_free().

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt set preferred key id

[Function]int gnutls_openpgp_crt_set_preferred_key_id
(gnutls openpgp crt t key , const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the selected keyid

This allows setting a preferred key id for the given certificate. This key will be used
by functions that involve key handling.

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls openpgp crt verify ring

[Function]int gnutls_openpgp_crt_verify_ring (gnutls openpgp crt t key ,
gnutls openpgp keyring t keyring , unsigned int flags , unsigned int *
verify)

key : the structure that holds the key.

keyring : holds the keyring to check against

flags: unused (should be 0)

verify : will hold the certificate verification output.

Verify all signatures in the key, using the given set of keys (keyring).

The key verification output will be put in verify and will be one or more of the
gnutls_certificate_status_t enumerated elements bitwise or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt verify self

[Function]int gnutls_openpgp_crt_verify_self (gnutls openpgp crt t key ,
unsigned int flags , unsigned int * verify)

key : the structure that holds the key.

flags: unused (should be 0)

verify : will hold the key verification output.

Chapter 9: Function Reference 294

Verifies the self signature in the key. The key verification output will be put in verify

and will be one or more of the gnutls certificate status t enumerated elements bitwise
or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp keyring check id

[Function]int gnutls_openpgp_keyring_check_id (gnutls openpgp keyring t
ring , const gnutls openpgp keyid t keyid , unsigned int flags)

ring : holds the keyring to check against

keyid: will hold the keyid to check for.

flags: unused (should be 0)

Check if a given key ID exists in the keyring.

Returns: GNUTLS_E_SUCCESS on success (if keyid exists) and a negative error code on
failure.

gnutls openpgp keyring deinit

[Function]void gnutls_openpgp_keyring_deinit (gnutls openpgp keyring t
keyring)

keyring : The structure to be initialized

This function will deinitialize a keyring structure.

gnutls openpgp keyring get crt count

[Function]int gnutls_openpgp_keyring_get_crt_count
(gnutls openpgp keyring t ring)

ring : is an OpenPGP key ring

This function will return the number of OpenPGP certificates present in the given
keyring.

Returns: the number of subkeys, or a negative value on error.

gnutls openpgp keyring get crt

[Function]int gnutls_openpgp_keyring_get_crt (gnutls openpgp keyring t
ring , unsigned int idx , gnutls openpgp crt t * cert)

ring : Holds the keyring.

idx: the index of the certificate to export

cert: An uninitialized gnutls_openpgp_crt_t structure

This function will extract an OpenPGP certificate from the given keyring. If the index
given is out of range GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.
The returned structure needs to be deinited.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Chapter 9: Function Reference 295

gnutls openpgp keyring import

[Function]int gnutls_openpgp_keyring_import (gnutls openpgp keyring t
keyring , const gnutls datum t * data , gnutls openpgp crt fmt t format)

keyring : The structure to store the parsed key.

data: The RAW or BASE64 encoded keyring.

format: One of gnutls_openpgp_keyring_fmt elements.

This function will convert the given RAW or Base64 encoded keyring to the native
gnutls_openpgp_keyring_t format. The output will be stored in ’keyring’.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp keyring init

[Function]int gnutls_openpgp_keyring_init (gnutls openpgp keyring t *
keyring)

keyring : The structure to be initialized

This function will initialize an keyring structure.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey deinit

[Function]void gnutls_openpgp_privkey_deinit (gnutls openpgp privkey t
key)

key : The structure to be initialized

This function will deinitialize a key structure.

gnutls openpgp privkey export dsa raw

[Function]int gnutls_openpgp_privkey_export_dsa_raw
(gnutls openpgp privkey t pkey , gnutls datum t * p , gnutls datum t * q ,
gnutls datum t * g , gnutls datum t * y , gnutls datum t * x)

pkey : Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

x: will hold the x

This function will export the DSA private key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.4.0

Chapter 9: Function Reference 296

gnutls openpgp privkey export rsa raw

[Function]int gnutls_openpgp_privkey_export_rsa_raw
(gnutls openpgp privkey t pkey , gnutls datum t * m , gnutls datum t * e ,
gnutls datum t * d , gnutls datum t * p , gnutls datum t * q , gnutls datum t
* u)

pkey : Holds the certificate

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.4.0

gnutls openpgp privkey export subkey dsa raw

[Function]int gnutls_openpgp_privkey_export_subkey_dsa_raw
(gnutls openpgp privkey t pkey , unsigned int idx , gnutls datum t * p ,
gnutls datum t * q , gnutls datum t * g , gnutls datum t * y , gnutls datum t
* x)

pkey : Holds the certificate

idx: Is the subkey index

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

x: will hold the x

This function will export the DSA private key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.4.0

gnutls openpgp privkey export subkey rsa raw

[Function]int gnutls_openpgp_privkey_export_subkey_rsa_raw
(gnutls openpgp privkey t pkey , unsigned int idx , gnutls datum t * m ,
gnutls datum t * e , gnutls datum t * d , gnutls datum t * p , gnutls datum t
* q , gnutls datum t * u)

pkey : Holds the certificate

Chapter 9: Function Reference 297

idx: Is the subkey index

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

This function will export the RSA private key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise an error.

Since: 2.4.0

gnutls openpgp privkey export

[Function]int gnutls_openpgp_privkey_export (gnutls openpgp privkey t
key , gnutls openpgp crt fmt t format , const char * password , unsigned int
flags , void * output_data , size t * output_data_size)

key : Holds the key.

format: One of gnutls openpgp crt fmt t elements.

password: the password that will be used to encrypt the key. (unused for now)

flags: zero for future compatibility

output data: will contain the key base64 encoded or raw

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will convert the given key to RAW or Base64 format.
If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 2.4.0

gnutls openpgp privkey get fingerprint

[Function]int gnutls_openpgp_privkey_get_fingerprint
(gnutls openpgp privkey t key , void * fpr , size t * fprlen)

key : the raw data that contains the OpenPGP secret key.

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Get the fingerprint of the OpenPGP key. Depends on the algorithm, the fingerprint
can be 16 or 20 bytes.

Returns: On success, 0 is returned, or an error code.

Since: 2.4.0

Chapter 9: Function Reference 298

gnutls openpgp privkey get key id

[Function]int gnutls_openpgp_privkey_get_key_id (gnutls openpgp privkey t
key , gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP secret key.

keyid: the buffer to save the keyid.

Get key-id.

Returns: the 64-bit keyID of the OpenPGP key.

Since: 2.4.0

gnutls openpgp privkey get pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_privkey_get_pk_algorithm (gnutls openpgp privkey t
key , unsigned int * bits)

key : is an OpenPGP key

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of an OpenPGP certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative value on error.

Since: 2.4.0

gnutls openpgp privkey get preferred key id

[Function]int gnutls_openpgp_privkey_get_preferred_key_id
(gnutls openpgp privkey t key , gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the struct to save the keyid.

Get the preferred key-id for the key.

Returns: the 64-bit preferred keyID of the OpenPGP key, or if it hasn’t been set it
returns GNUTLS_E_INVALID_REQUEST.

gnutls openpgp privkey get revoked status

[Function]int gnutls_openpgp_privkey_get_revoked_status
(gnutls openpgp privkey t key)

key : the structure that contains the OpenPGP private key.

Get revocation status of key.

Returns: true (1) if the key has been revoked, or false (0) if it has not, or a negative
value indicates an error.

Since: 2.4.0

Chapter 9: Function Reference 299

gnutls openpgp privkey get subkey count

[Function]int gnutls_openpgp_privkey_get_subkey_count
(gnutls openpgp privkey t key)

key : is an OpenPGP key

This function will return the number of subkeys present in the given OpenPGP cer-
tificate.

Returns: the number of subkeys, or a negative value on error.

Since: 2.4.0

gnutls openpgp privkey get subkey creation time

[Function]time_t gnutls_openpgp_privkey_get_subkey_creation_time
(gnutls openpgp privkey t key , unsigned int idx)

key : the structure that contains the OpenPGP private key.

idx: the subkey index

Get subkey creation time.

Returns: the timestamp when the OpenPGP key was created.

Since: 2.4.0

gnutls openpgp privkey get subkey expiration time

[Function]time_t gnutls_openpgp_privkey_get_subkey_expiration_time
(gnutls openpgp privkey t key , unsigned int idx)

key : the structure that contains the OpenPGP private key.

idx: the subkey index

Get subkey expiration time. A value of ’0’ means that the key doesn’t expire at all.

Returns: the time when the OpenPGP key expires.

Since: 2.4.0

gnutls openpgp privkey get subkey fingerprint

[Function]int gnutls_openpgp_privkey_get_subkey_fingerprint
(gnutls openpgp privkey t key , unsigned int idx , void * fpr , size t *
fprlen)

key : the raw data that contains the OpenPGP secret key.

idx: the subkey index

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Get the fingerprint of an OpenPGP subkey. Depends on the algorithm, the fingerprint
can be 16 or 20 bytes.

Returns: On success, 0 is returned, or an error code.

Since: 2.4.0

Chapter 9: Function Reference 300

gnutls openpgp privkey get subkey idx

[Function]int gnutls_openpgp_privkey_get_subkey_idx
(gnutls openpgp privkey t key , const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP private key.

keyid: the keyid.

Get index of subkey.

Returns: the index of the subkey or a negative error value.

Since: 2.4.0

gnutls openpgp privkey get subkey id

[Function]int gnutls_openpgp_privkey_get_subkey_id
(gnutls openpgp privkey t key , unsigned int idx , gnutls openpgp keyid t
keyid)

key : the structure that contains the OpenPGP secret key.

idx: the subkey index

keyid: the buffer to save the keyid.

Get the key-id for the subkey.

Returns: the 64-bit keyID of the OpenPGP key.

Since: 2.4.0

gnutls openpgp privkey get subkey pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_privkey_get_subkey_pk_algorithm
(gnutls openpgp privkey t key , unsigned int idx , unsigned int * bits)

key : is an OpenPGP key

idx: is the subkey index

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of a subkey of an OpenPGP cer-
tificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative value on error.

Since: 2.4.0

gnutls openpgp privkey get subkey revoked status

[Function]int gnutls_openpgp_privkey_get_subkey_revoked_status
(gnutls openpgp privkey t key , unsigned int idx)

key : the structure that contains the OpenPGP private key.

idx: is the subkey index

Chapter 9: Function Reference 301

Get revocation status of key.

Returns: true (1) if the key has been revoked, or false (0) if it has not, or a negative
value indicates an error.

Since: 2.4.0

gnutls openpgp privkey import

[Function]int gnutls_openpgp_privkey_import (gnutls openpgp privkey t
key , const gnutls datum t * data , gnutls openpgp crt fmt t format , const
char * password , unsigned int flags)

key : The structure to store the parsed key.

data: The RAW or BASE64 encoded key.

format: One of gnutls_openpgp_crt_fmt_t elements.

password: not used for now

flags: should be zero

This function will convert the given RAW or Base64 encoded key to the native
gnutls openpgp privkey t format. The output will be stored in ’key’.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey init

[Function]int gnutls_openpgp_privkey_init (gnutls openpgp privkey t * key)
key : The structure to be initialized

This function will initialize an OpenPGP key structure.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey sec param

[Function]gnutls_sec_param_t gnutls_openpgp_privkey_sec_param
(gnutls openpgp privkey t key)

key : a key structure

This function will return the security parameter appropriate with this private key.

Returns: On success, a valid security parameter is returned otherwise GNUTLS_SEC_

PARAM_UNKNOWN is returned.

gnutls openpgp privkey set preferred key id

[Function]int gnutls_openpgp_privkey_set_preferred_key_id
(gnutls openpgp privkey t key , const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the selected keyid

This allows setting a preferred key id for the given certificate. This key will be used
by functions that involve key handling.

Returns: On success, 0 is returned, or an error code.

Chapter 9: Function Reference 302

gnutls openpgp privkey sign hash

[Function]int gnutls_openpgp_privkey_sign_hash (gnutls openpgp privkey t
key , const gnutls datum t * hash , gnutls datum t * signature)

key : Holds the key

hash: holds the data to be signed

signature: will contain newly allocated signature

This function will sign the given hash using the private key. You should use gnutls_
openpgp_privkey_set_preferred_key_id() before calling this function to set the
subkey to use.

Returns: On success, GNUTLS_E_SUCCESS is returned, otherwise a negative error value.

Deprecated: Use gnutls_privkey_sign_hash() instead.

gnutls openpgp set recv key function

[Function]void gnutls_openpgp_set_recv_key_function (gnutls session t
session , gnutls openpgp recv key func func)

session: a TLS session

func: the callback

This funtion will set a key retrieval function for OpenPGP keys. This callback is only
useful in server side, and will be used if the peer sent a key fingerprint instead of a
full key.

9.5 TLS Inner Application (TLS/IA) Functions

The following functions are used for TLS Inner Application (TLS/IA). Their prototypes lie
in ‘gnutls/extra.h’. You need to link with ‘libgnutls-extra’ to be able to use these
functions (see Section 9.3 [GnuTLS-extra functions], page 282).

The typical control flow in an TLS/IA client (that would not require an Application Phase
for resumed sessions) would be similar to the following:

int client_avp (gnuls_session_t *session, void *ptr,

const char *last, size_t lastlen,

char **new, size_t *newlen)

{

...

}

...

int main ()

{

gnutls_ia_client_credentials_t iacred;

...

gnutls_init (&session, GNUTLS_CLIENT);

...

/* Enable TLS/IA. */

gnutls_ia_allocate_client_credentials(&iacred);

gnutls_ia_set_client_avp_function(iacred, client_avp);

Chapter 9: Function Reference 303

gnutls_credentials_set (session, GNUTLS_CRD_IA, iacred);

...

ret = gnutls_handshake (session);

// Error handling...

...

if (gnutls_ia_handshake_p (session))

{

ret = gnutls_ia_handshake (session);

// Error handling...

...

See below for detailed descriptions of all the functions used above.

The function client_avp would have to be implemented by your application. The func-
tion is responsible for handling the AVP data. See gnutls_ia_set_client_avp_function
below for more information on how that function should be implemented.

The control flow in a typical server is similar to the above, use gnutls_ia_server_

credentials_t instead of gnutls_ia_client_credentials_t, and replace the call to the
client functions with the corresponding server functions.

gnutls ia allocate client credentials

[Function]int gnutls_ia_allocate_client_credentials
(gnutls ia client credentials t * sc)

sc: is a pointer to a gnutls_ia_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Adding this credential to a session will enable TLS/IA, and will require an Application
Phase after the TLS handshake (if the server support TLS/IA). Use gnutls_ia_

enable() to toggle the TLS/IA mode.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls ia allocate server credentials

[Function]int gnutls_ia_allocate_server_credentials
(gnutls ia server credentials t * sc)

sc: is a pointer to a gnutls_ia_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Adding this credential to a session will enable TLS/IA, and will require an Application
Phase after the TLS handshake (if the client support TLS/IA). Use gnutls_ia_

enable() to toggle the TLS/IA mode.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Chapter 9: Function Reference 304

gnutls ia enable

[Function]void gnutls_ia_enable (gnutls session t session , int
allow_skip_on_resume)

session: is a gnutls_session_t structure.

allow skip on resume: non-zero if local party allows to skip the TLS/IA application
phases for a resumed session.

Specify whether we must advertise support for the TLS/IA extension during the
handshake.

At the client side, we always advertise TLS/IA if gnutls ia enable was called before
the handshake; at the server side, we also require that the client has advertised that it
wants to run TLS/IA before including the advertisement, as required by the protocol.

Similarly, at the client side we always advertise that we allow TLS/IA to be skipped
for resumed sessions if allow_skip_on_resume is non-zero; at the server side, we also
require that the session is indeed resumable and that the client has also advertised
that it allows TLS/IA to be skipped for resumed sessions.

After the TLS handshake, call gnutls_ia_handshake_p() to find out whether both
parties agreed to do a TLS/IA handshake, before calling gnutls_ia_handshake() or
one of the lower level gnutls ia * functions.

gnutls ia endphase send

[Function]int gnutls_ia_endphase_send (gnutls session t session , int
final_p)

session: is a gnutls_session_t structure.

final p: Set iff this should signal the final phase.

Send a TLS/IA end phase message.

In the client, this should only be used to acknowledge an end phase message sent by
the server.

In the server, this can be called instead of gnutls_ia_send() if the server wishes to
end an application phase.

Return value: Return 0 on success, or an error code.

gnutls ia extract inner secret

[Function]void gnutls_ia_extract_inner_secret (gnutls session t session ,
char * buffer)

session: is a gnutls_session_t structure.

buffer: pre-allocated buffer to hold 48 bytes of inner secret.

Copy the 48 bytes large inner secret into the specified buffer

This function is typically used after the TLS/IA handshake has concluded. The
TLS/IA inner secret can be used as input to a PRF to derive session keys. Do not
use the inner secret directly as a session key, because for a resumed session that does
not include an application phase, the inner secret will be identical to the inner secret
in the original session. It is important to include, for example, the client and server
randomness when deriving a sesssion key from the inner secret.

Chapter 9: Function Reference 305

gnutls ia free client credentials

[Function]void gnutls_ia_free_client_credentials
(gnutls ia client credentials t sc)

sc: is a gnutls_ia_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls ia free server credentials

[Function]void gnutls_ia_free_server_credentials
(gnutls ia server credentials t sc)

sc: is a gnutls_ia_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls ia generate challenge

[Function]int gnutls_ia_generate_challenge (gnutls session t session ,
size t buffer_size , char * buffer)

session: is a gnutls_session_t structure.

buffer size: size of output buffer.

buffer: pre-allocated buffer to contain buffer_size bytes of output.

Generate an application challenge that the client cannot control or predict, based on
the TLS/IA inner secret.

Return value: Returns 0 on success, or an negative error code.

gnutls ia get client avp ptr

[Function]void * gnutls_ia_get_client_avp_ptr
(gnutls ia client credentials t cred)

cred: is a gnutls_ia_client_credentials_t structure.

Returns the pointer that will be provided to the TLS/IA callback function as the first
argument.

Returns: The client callback data pointer.

gnutls ia get server avp ptr

[Function]void * gnutls_ia_get_server_avp_ptr
(gnutls ia server credentials t cred)

cred: is a gnutls_ia_client_credentials_t structure.

Returns the pointer that will be provided to the TLS/IA callback function as the first
argument.

Returns: The server callback data pointer.

Chapter 9: Function Reference 306

gnutls ia handshake p

[Function]int gnutls_ia_handshake_p (gnutls session t session)
session: is a gnutls_session_t structure.

Predicate to be used after gnutls_handshake() to decide whether to invoke gnutls_
ia_handshake(). Usable by both clients and servers.

Return value: non-zero if TLS/IA handshake is expected, zero otherwise.

gnutls ia handshake

[Function]int gnutls_ia_handshake (gnutls session t session)
session: is a gnutls_session_t structure.

Perform a TLS/IA handshake. This should be called after gnutls_handshake() iff
gnutls_ia_handshake_p().

Returns: On success, GNUTLS_E_SUCCESS (zero) is returned, otherwise an error code
is returned.

gnutls ia permute inner secret

[Function]int gnutls_ia_permute_inner_secret (gnutls session t session ,
size t session_keys_size , const char * session_keys)

session: is a gnutls_session_t structure.

session keys size: Size of generated session keys (0 if none).

session keys: Generated session keys, used to permute inner secret (NULL if none).

Permute the inner secret using the generated session keys.

This can be called in the TLS/IA AVP callback to mix any generated session keys
with the TLS/IA inner secret.

Return value: Return zero on success, or a negative error code.

gnutls ia recv

[Function]ssize_t gnutls_ia_recv (gnutls session t session , char * data ,
size t sizeofdata)

session: is a gnutls_session_t structure.

data: the buffer that the data will be read into, must hold >= 12 bytes.

sizeofdata: the number of requested bytes, must be >= 12.

Receive TLS/IA data. This function has the similar semantics with recv(). The
only difference is that it accepts a GnuTLS session, and uses different error codes.

If the server attempt to finish an application phase, this function will return
GNUTLS_E_WARNING_IA_IPHF_RECEIVED or GNUTLS_E_WARNING_IA_FPHF_RECEIVED.
The caller should then invoke gnutls_ia_verify_endphase(), and if it runs the
client side, also send an endphase message of its own using gnutls ia endphase send.

If EINTR is returned by the internal push function (the default is code{recv()}) then
GNUTLS E INTERRUPTED will be returned. If GNUTLS E INTERRUPTED or

Chapter 9: Function Reference 307

GNUTLS E AGAIN is returned, you must call this function again, with the same
parameters; alternatively you could provide a NULL pointer for data, and 0 for size.

Returns: The number of bytes received. A negative error code is returned in case of
an error. The GNUTLS_E_WARNING_IA_IPHF_RECEIVED and GNUTLS_E_WARNING_IA_

FPHF_RECEIVED errors are returned when an application phase finished message has
been sent by the server.

gnutls ia send

[Function]ssize_t gnutls_ia_send (gnutls session t session , const char *
data , size t sizeofdata)

session: is a gnutls_session_t structure.

data: contains the data to send

sizeofdata: is the length of the data

Send TLS/IA application payload data. This function has the similar semantics with
send(). The only difference is that it accepts a GnuTLS session, and uses different
error codes.

The TLS/IA protocol is synchronous, so you cannot send more than one packet at a
time. The client always send the first packet.

To finish an application phase in the server, use gnutls_ia_endphase_send(). The
client cannot end an application phase unilaterally; rather, a client is required to
respond with an endphase of its own if gnutls ia recv indicates that the server has
sent one.

If the EINTR is returned by the internal push function (the default is send()} then
GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_

AGAIN is returned, you must call this function again, with the same parameters;
alternatively you could provide a NULL pointer for data, and 0 for size.

Returns: The number of bytes sent, or a negative error code.

gnutls ia set client avp function

[Function]void gnutls_ia_set_client_avp_function
(gnutls ia client credentials t cred , gnutls ia avp func avp_func)

cred: is a gnutls_ia_client_credentials_t structure.

avp func: is the callback function

Set the TLS/IA AVP callback handler used for the session.

The AVP callback is called to process AVPs received from the server, and to get a
new AVP to send to the server.

The callback’s function form is: int (*avp func) (gnutls session t session, void *ptr,
const char *last, size t lastlen, char **next, size t *nextlen);

The session parameter is the gnutls_session_t structure corresponding to the
current session. The ptr parameter is the application hook pointer, set through
gnutls_ia_set_client_avp_ptr(). The AVP received from the server is present in
last of lastlen size, which will be NULL on the first invocation. The newly allocated
output AVP to send to the server should be placed in *next of *nextlen size.

Chapter 9: Function Reference 308

The callback may invoke gnutls_ia_permute_inner_secret() to mix any generated
session keys with the TLS/IA inner secret.

Return 0 (GNUTLS_IA_APPLICATION_PAYLOAD) on success, or a negative error code to
abort the TLS/IA handshake.

Note that the callback must use allocate the next parameter using gnutls_malloc(),
because it is released via gnutls_free() by the TLS/IA handshake function.

gnutls ia set client avp ptr

[Function]void gnutls_ia_set_client_avp_ptr (gnutls ia client credentials t
cred , void * ptr)

cred: is a gnutls_ia_client_credentials_t structure.

ptr: is the pointer

Sets the pointer that will be provided to the TLS/IA callback function as the first
argument.

gnutls ia set server avp function

[Function]void gnutls_ia_set_server_avp_function
(gnutls ia server credentials t cred , gnutls ia avp func avp_func)

cred: is a gnutls_ia_server_credentials_t structure.

Set the TLS/IA AVP callback handler used for the session.

The callback’s function form is: int (*avp func) (gnutls session t session, void *ptr,
const char *last, size t lastlen, char **next, size t *nextlen);

The session parameter is the gnutls_session_t structure corresponding to the
current session. The ptr parameter is the application hook pointer, set through
gnutls_ia_set_server_avp_ptr(). The AVP received from the client is present in
last of lastlen size. The newly allocated output AVP to send to the client should
be placed in *next of *nextlen size.

The AVP callback is called to process incoming AVPs from the client, and to get a
new AVP to send to the client. It can also be used to instruct the TLS/IA handshake
to do go into the Intermediate or Final phases. It return a negative error code, or a
gnutls_ia_apptype_t message type.

The callback may invoke gnutls_ia_permute_inner_secret() to mix any generated
session keys with the TLS/IA inner secret.

Specifically, return GNUTLS_IA_APPLICATION_PAYLOAD (0) to send another AVP to
the client, return GNUTLS_IA_INTERMEDIATE_PHASE_FINISHED (1) to indicate that an
IntermediatePhaseFinished message should be sent, and return GNUTLS_IA_FINAL_

PHASE_FINISHED (2) to indicate that an FinalPhaseFinished message should be sent.
In the last two cases, the contents of the next and nextlen parameter is not used.

Note that the callback must use allocate the next parameter using gnutls_malloc(),
because it is released via gnutls_free() by the TLS/IA handshake function.

Chapter 9: Function Reference 309

gnutls ia set server avp ptr

[Function]void gnutls_ia_set_server_avp_ptr (gnutls ia server credentials t
cred , void * ptr)

cred: is a gnutls_ia_client_credentials_t structure.

ptr: is the pointer

Sets the pointer that will be provided to the TLS/IA callback function as the first
argument.

gnutls ia verify endphase

[Function]int gnutls_ia_verify_endphase (gnutls session t session , const
char * checksum)

session: is a gnutls_session_t structure.

checksum: 12-byte checksum data, received from gnutls_ia_recv().

Verify TLS/IA end phase checksum data. If verification fails, the GNUTLS_A_INNER_

APPLICATION_VERIFICATION alert is sent to the other sie.

This function is called when gnutls_ia_recv() return GNUTLS_E_WARNING_IA_IPHF_

RECEIVED or GNUTLS_E_WARNING_IA_FPHF_RECEIVED.

Return value: Return 0 on successful verification, or an error code. If the checksum
verification of the end phase message fails, GNUTLS_E_IA_VERIFY_FAILED is returned.

9.6 Error Codes and Descriptions

The error codes used throughout the library are described below. The return code GNUTLS_
E_SUCCESS indicate successful operation, and is guaranteed to have the value 0, so you can
use it in logical expressions.

GNUTLS_E_AGAIN:

Resource temporarily unavailable, try again.

GNUTLS_E_ASN1_DER_ERROR:

ASN1 parser: Error in DER parsing.

GNUTLS_E_ASN1_DER_OVERFLOW:

ASN1 parser: Overflow in DER parsing.

GNUTLS_E_ASN1_ELEMENT_NOT_FOUND:

ASN1 parser: Element was not found.

GNUTLS_E_ASN1_GENERIC_ERROR:

ASN1 parser: Generic parsing error.

GNUTLS_E_ASN1_IDENTIFIER_NOT_FOUND:

ASN1 parser: Identifier was not found

GNUTLS_E_ASN1_SYNTAX_ERROR:

ASN1 parser: Syntax error.

GNUTLS_E_ASN1_TAG_ERROR:

ASN1 parser: Error in TAG.

Chapter 9: Function Reference 310

GNUTLS_E_ASN1_TAG_IMPLICIT:

ASN1 parser: error in implicit tag

GNUTLS_E_ASN1_TYPE_ANY_ERROR:

ASN1 parser: Error in type ’ANY’.

GNUTLS_E_ASN1_VALUE_NOT_FOUND:

ASN1 parser: Value was not found.

GNUTLS_E_ASN1_VALUE_NOT_VALID:

ASN1 parser: Value is not valid.

GNUTLS_E_BASE64_DECODING_ERROR:

Base64 decoding error.

GNUTLS_E_BASE64_ENCODING_ERROR:

Base64 encoding error.

GNUTLS_E_BASE64_UNEXPECTED_HEADER_ERROR:

Base64 unexpected header error.

GNUTLS_E_CERTIFICATE_ERROR:

Error in the certificate.

GNUTLS_E_CERTIFICATE_KEY_MISMATCH:

The certificate and the given key do not match.

GNUTLS_E_CHANNEL_BINDING_NOT_AVAILABLE:

Channel binding data not available

GNUTLS_E_COMPRESSION_FAILED:

Compression of the TLS record packet has failed.

GNUTLS_E_CONSTRAINT_ERROR:

Some constraint limits were reached.

GNUTLS_E_CRYPTODEV_DEVICE_ERROR:

Error opening /dev/crypto

GNUTLS_E_CRYPTODEV_IOCTL_ERROR:

Error interfacing with /dev/crypto

GNUTLS_E_CRYPTO_ALREADY_REGISTERED:

There is already a crypto algorithm with lower priority.

GNUTLS_E_CRYPTO_INIT_FAILED:

The initialization of crypto backend has failed.

GNUTLS_E_DB_ERROR:

Error in Database backend.

GNUTLS_E_DECOMPRESSION_FAILED:

Decompression of the TLS record packet has failed.

GNUTLS_E_DECRYPTION_FAILED:

Decryption has failed.

Chapter 9: Function Reference 311

GNUTLS_E_DH_PRIME_UNACCEPTABLE:

The Diffie-Hellman prime sent by the server is not acceptable (not long enough).

GNUTLS_E_ENCRYPTION_FAILED:

Encryption has failed.

GNUTLS_E_ERROR_IN_FINISHED_PACKET:

An error was encountered at the TLS Finished packet calculation.

GNUTLS_E_EXPIRED:

The requested session has expired.

GNUTLS_E_FATAL_ALERT_RECEIVED:

A TLS fatal alert has been received.

GNUTLS_E_FILE_ERROR:

Error while reading file.

GNUTLS_E_GOT_APPLICATION_DATA:

TLS Application data were received, while expecting handshake data.

GNUTLS_E_HANDSHAKE_TOO_LARGE:

The handshake data size is too large (DoS?), check gnutls handshake set max packet length().

GNUTLS_E_HASH_FAILED:

Hashing has failed.

GNUTLS_E_IA_VERIFY_FAILED:

Verifying TLS/IA phase checksum failed

GNUTLS_E_ILLEGAL_SRP_USERNAME:

The SRP username supplied is illegal.

GNUTLS_E_INCOMPATIBLE_GCRYPT_LIBRARY:

The gcrypt library version is too old.

GNUTLS_E_INCOMPATIBLE_LIBTASN1_LIBRARY:

The tasn1 library version is too old.

GNUTLS_E_INCOMPAT_DSA_KEY_WITH_TLS_PROTOCOL:

The given DSA key is incompatible with the selected TLS protocol.

GNUTLS_E_INIT_LIBEXTRA:

The initialization of GnuTLS-extra has failed.

GNUTLS_E_INSUFFICIENT_CREDENTIALS:

Insufficient credentials for that request.

GNUTLS_E_INTERNAL_ERROR:

GnuTLS internal error.

GNUTLS_E_INTERRUPTED:

Function was interrupted.

GNUTLS_E_INVALID_PASSWORD:

The given password contains invalid characters.

Chapter 9: Function Reference 312

GNUTLS_E_INVALID_REQUEST:

The request is invalid.

GNUTLS_E_INVALID_SESSION:

The specified session has been invalidated for some reason.

GNUTLS_E_KEY_USAGE_VIOLATION:

Key usage violation in certificate has been detected.

GNUTLS_E_LARGE_PACKET:

A large TLS record packet was received.

GNUTLS_E_LIBRARY_VERSION_MISMATCH:

The GnuTLS library version does not match the GnuTLS-extra library version.

GNUTLS_E_LOCKING_ERROR:

Thread locking error

GNUTLS_E_LZO_INIT_FAILED:

The initialization of LZO has failed.

GNUTLS_E_MAC_VERIFY_FAILED:

The Message Authentication Code verification failed.

GNUTLS_E_MEMORY_ERROR:

Internal error in memory allocation.

GNUTLS_E_MPI_PRINT_FAILED:

Could not export a large integer.

GNUTLS_E_MPI_SCAN_FAILED:

The scanning of a large integer has failed.

GNUTLS_E_NO_CERTIFICATE_FOUND:

The peer did not send any certificate.

GNUTLS_E_NO_CIPHER_SUITES:

No supported cipher suites have been found.

GNUTLS_E_NO_COMPRESSION_ALGORITHMS:

No supported compression algorithms have been found.

GNUTLS_E_NO_TEMPORARY_DH_PARAMS:

No temporary DH parameters were found.

GNUTLS_E_NO_TEMPORARY_RSA_PARAMS:

No temporary RSA parameters were found.

GNUTLS_E_OPENPGP_FINGERPRINT_UNSUPPORTED:

The OpenPGP fingerprint is not supported.

GNUTLS_E_OPENPGP_GETKEY_FAILED:

Could not get OpenPGP key.

GNUTLS_E_OPENPGP_KEYRING_ERROR:

Error loading the keyring.

Chapter 9: Function Reference 313

GNUTLS_E_OPENPGP_PREFERRED_KEY_ERROR:

The OpenPGP key has not a preferred key set.

GNUTLS_E_OPENPGP_SUBKEY_ERROR:

Could not find OpenPGP subkey.

GNUTLS_E_OPENPGP_UID_REVOKED:

The OpenPGP User ID is revoked.

GNUTLS_E_PARSING_ERROR:

Error in parsing.

GNUTLS_E_PKCS11_ATTRIBUTE_ERROR:

PKCS #11 error in attribute

GNUTLS_E_PKCS11_DATA_ERROR:

PKCS #11 error in data

GNUTLS_E_PKCS11_DEVICE_ERROR:

PKCS #11 error in device

GNUTLS_E_PKCS11_ERROR:

PKCS #11 error.

GNUTLS_E_PKCS11_KEY_ERROR:

PKCS #11 error in key

GNUTLS_E_PKCS11_LOAD_ERROR:

PKCS #11 initialization error.

GNUTLS_E_PKCS11_PIN_ERROR:

PKCS #11 error in PIN.

GNUTLS_E_PKCS11_PIN_EXPIRED:

PKCS #11 PIN expired

GNUTLS_E_PKCS11_PIN_LOCKED:

PKCS #11 PIN locked

GNUTLS_E_PKCS11_SESSION_ERROR:

PKCS #11 error in session

GNUTLS_E_PKCS11_SIGNATURE_ERROR:

PKCS #11 error in signature

GNUTLS_E_PKCS11_SLOT_ERROR:

PKCS #11 error in slot

GNUTLS_E_PKCS11_TOKEN_ERROR:

PKCS #11 error in token

GNUTLS_E_PKCS11_UNSUPPORTED_FEATURE_ERROR:

PKCS #11 unsupported feature

GNUTLS_E_PKCS11_USER_ERROR:

PKCS #11 user error

Chapter 9: Function Reference 314

GNUTLS_E_PKCS1_WRONG_PAD:

Wrong padding in PKCS1 packet.

GNUTLS_E_PK_DECRYPTION_FAILED:

Public key decryption has failed.

GNUTLS_E_PK_ENCRYPTION_FAILED:

Public key encryption has failed.

GNUTLS_E_PK_SIGN_FAILED:

Public key signing has failed.

GNUTLS_E_PK_SIG_VERIFY_FAILED:

Public key signature verification has failed.

GNUTLS_E_PULL_ERROR:

Error in the pull function.

GNUTLS_E_PUSH_ERROR:

Error in the push function.

GNUTLS_E_RANDOM_FAILED:

Failed to acquire random data.

GNUTLS_E_RECEIVED_ILLEGAL_EXTENSION:

An illegal TLS extension was received.

GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER:

An illegal parameter has been received.

GNUTLS_E_RECORD_LIMIT_REACHED:

The upper limit of record packet sequence numbers has been reached. Wow!

GNUTLS_E_REHANDSHAKE:

Rehandshake was requested by the peer.

GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE:

The requested data were not available.

GNUTLS_E_SAFE_RENEGOTIATION_FAILED:

Safe renegotiation failed.

GNUTLS_E_SHORT_MEMORY_BUFFER:

The given memory buffer is too short to hold parameters.

GNUTLS_E_SRP_PWD_ERROR:

Error in password file.

GNUTLS_E_SRP_PWD_PARSING_ERROR:

Parsing error in password file.

GNUTLS_E_SUCCESS:

Success.

GNUTLS_E_TOO_MANY_EMPTY_PACKETS:

Too many empty record packets have been received.

Chapter 9: Function Reference 315

GNUTLS_E_UNEXPECTED_HANDSHAKE_PACKET:

An unexpected TLS handshake packet was received.

GNUTLS_E_UNEXPECTED_PACKET:

An unexpected TLS packet was received.

GNUTLS_E_UNEXPECTED_PACKET_LENGTH:

A TLS packet with unexpected length was received.

GNUTLS_E_UNKNOWN_ALGORITHM:

The specified algorithm or protocol is unknown.

GNUTLS_E_UNKNOWN_CIPHER_SUITE:

Could not negotiate a supported cipher suite.

GNUTLS_E_UNKNOWN_CIPHER_TYPE:

The cipher type is unsupported.

GNUTLS_E_UNKNOWN_COMPRESSION_ALGORITHM:

Could not negotiate a supported compression method.

GNUTLS_E_UNKNOWN_HASH_ALGORITHM:

The hash algorithm is unknown.

GNUTLS_E_UNKNOWN_PKCS_BAG_TYPE:

The PKCS structure’s bag type is unknown.

GNUTLS_E_UNKNOWN_PKCS_CONTENT_TYPE:

The PKCS structure’s content type is unknown.

GNUTLS_E_UNKNOWN_PK_ALGORITHM:

An unknown public key algorithm was encountered.

GNUTLS_E_UNKNOWN_SRP_USERNAME:

The SRP username supplied is unknown.

GNUTLS_E_UNSAFE_RENEGOTIATION_DENIED:

Unsafe renegotiation denied.

GNUTLS_E_UNSUPPORTED_CERTIFICATE_TYPE:

The certificate type is not supported.

GNUTLS_E_UNSUPPORTED_SIGNATURE_ALGORITHM:

The signature algorithm is not supported.

GNUTLS_E_UNSUPPORTED_VERSION_PACKET:

A record packet with illegal version was received.

GNUTLS_E_UNWANTED_ALGORITHM:

An algorithm that is not enabled was negotiated.

GNUTLS_E_WARNING_ALERT_RECEIVED:

A TLS warning alert has been received.

GNUTLS_E_WARNING_IA_FPHF_RECEIVED:

Received a TLS/IA Final Phase Finished message

Chapter 9: Function Reference 316

GNUTLS_E_WARNING_IA_IPHF_RECEIVED:

Received a TLS/IA Intermediate Phase Finished message

GNUTLS_E_X509_UNKNOWN_SAN:

Unknown Subject Alternative name in X.509 certificate.

GNUTLS_E_X509_UNSUPPORTED_ATTRIBUTE:

The certificate has unsupported attributes.

GNUTLS_E_X509_UNSUPPORTED_CRITICAL_EXTENSION:

Unsupported critical extension in X.509 certificate.

GNUTLS_E_X509_UNSUPPORTED_OID:

The OID is not supported.

Chapter 10: All the Supported Ciphersuites in GnuTLS 317

10 All the Supported Ciphersuites in GnuTLS

Available cipher suites:

TLS ANON DH ARCFOUR MD5 0x00 0x18 SSL3.0
TLS ANON DH 3DES EDE CBC SHA1 0x00 0x1b SSL3.0
TLS ANON DH AES 128 CBC SHA1 0x00 0x34 SSL3.0
TLS ANON DH AES 256 CBC SHA1 0x00 0x3a SSL3.0
TLS ANON DH CAMELLIA 128 CBC SHA1 0x00 0x46 TLS1.0
TLS ANON DH CAMELLIA 256 CBC SHA1 0x00 0x89 TLS1.0
TLS ANON DH AES 128 CBC SHA256 0x00 0x6c TLS1.2
TLS ANON DH AES 256 CBC SHA256 0x00 0x6d TLS1.2
TLS PSK SHA ARCFOUR SHA1 0x00 0x8a TLS1.0
TLS PSK SHA 3DES EDE CBC SHA1 0x00 0x8b TLS1.0
TLS PSK SHA AES 128 CBC SHA1 0x00 0x8c TLS1.0
TLS PSK SHA AES 256 CBC SHA1 0x00 0x8d TLS1.0
TLS DHE PSK SHA ARCFOUR SHA1 0x00 0x8e TLS1.0
TLS DHE PSK SHA 3DES EDE CBC SHA1 0x00 0x8f TLS1.0
TLS DHE PSK SHA AES 128 CBC SHA1 0x00 0x90 TLS1.0
TLS DHE PSK SHA AES 256 CBC SHA1 0x00 0x91 TLS1.0
TLS SRP SHA 3DES EDE CBC SHA1 0xc0 0x1a TLS1.0
TLS SRP SHA AES 128 CBC SHA1 0xc0 0x1d TLS1.0
TLS SRP SHA AES 256 CBC SHA1 0xc0 0x20 TLS1.0
TLS SRP SHA DSS 3DES EDE CBC SHA1 0xc0 0x1c TLS1.0
TLS SRP SHA RSA 3DES EDE CBC SHA1 0xc0 0x1b TLS1.0
TLS SRP SHA DSS AES 128 CBC SHA1 0xc0 0x1f TLS1.0
TLS SRP SHA RSA AES 128 CBC SHA1 0xc0 0x1e TLS1.0
TLS SRP SHA DSS AES 256 CBC SHA1 0xc0 0x22 TLS1.0
TLS SRP SHA RSA AES 256 CBC SHA1 0xc0 0x21 TLS1.0
TLS DHE DSS ARCFOUR SHA1 0x00 0x66 TLS1.0
TLS DHE DSS 3DES EDE CBC SHA1 0x00 0x13 SSL3.0
TLS DHE DSS AES 128 CBC SHA1 0x00 0x32 SSL3.0
TLS DHE DSS AES 256 CBC SHA1 0x00 0x38 SSL3.0
TLS DHE DSS CAMELLIA 128 CBC SHA1 0x00 0x44 TLS1.0
TLS DHE DSS CAMELLIA 256 CBC SHA1 0x00 0x87 TLS1.0
TLS DHE DSS AES 128 CBC SHA256 0x00 0x40 TLS1.2
TLS DHE DSS AES 256 CBC SHA256 0x00 0x6a TLS1.2
TLS DHE RSA 3DES EDE CBC SHA1 0x00 0x16 SSL3.0
TLS DHE RSA AES 128 CBC SHA1 0x00 0x33 SSL3.0
TLS DHE RSA AES 256 CBC SHA1 0x00 0x39 SSL3.0
TLS DHE RSA CAMELLIA 128 CBC SHA1 0x00 0x45 TLS1.0
TLS DHE RSA CAMELLIA 256 CBC SHA1 0x00 0x88 TLS1.0
TLS DHE RSA AES 128 CBC SHA256 0x00 0x67 TLS1.2
TLS DHE RSA AES 256 CBC SHA256 0x00 0x6b TLS1.2
TLS RSA NULL MD5 0x00 0x01 SSL3.0
TLS RSA NULL SHA1 0x00 0x02 SSL3.0
TLS RSA NULL SHA256 0x00 0x3b TLS1.2
TLS RSA EXPORT ARCFOUR 40 MD5 0x00 0x03 SSL3.0

Chapter 10: All the Supported Ciphersuites in GnuTLS 318

TLS RSA ARCFOUR SHA1 0x00 0x05 SSL3.0
TLS RSA ARCFOUR MD5 0x00 0x04 SSL3.0
TLS RSA 3DES EDE CBC SHA1 0x00 0x0a SSL3.0
TLS RSA AES 128 CBC SHA1 0x00 0x2f SSL3.0
TLS RSA AES 256 CBC SHA1 0x00 0x35 SSL3.0
TLS RSA CAMELLIA 128 CBC SHA1 0x00 0x41 TLS1.0
TLS RSA CAMELLIA 256 CBC SHA1 0x00 0x84 TLS1.0
TLS RSA AES 128 CBC SHA256 0x00 0x3c TLS1.2
TLS RSA AES 256 CBC SHA256 0x00 0x3d TLS1.2

Available certificate types:

• X.509

• OPENPGP

Available protocols:

• SSL3.0

• TLS1.0

• TLS1.1

• TLS1.2

Available ciphers:

• AES-256-CBC

• AES-128-CBC

• 3DES-CBC

• DES-CBC

• ARCFOUR-128

• ARCFOUR-40

• RC2-40

• CAMELLIA-256-CBC

• CAMELLIA-128-CBC

• NULL

Available MAC algorithms:

• SHA1

• MD5

• SHA256

• SHA384

• SHA512

• MD2

• RIPEMD160

• MAC-NULL

Available key exchange methods:

• ANON-DH

Chapter 10: All the Supported Ciphersuites in GnuTLS 319

• RSA

• RSA-EXPORT

• DHE-RSA

• DHE-DSS

• SRP-DSS

• SRP-RSA

• SRP

• PSK

• DHE-PSK

Available public key algorithms:

• RSA

• DSA

Available public key signature algorithms:

• RSA-SHA1

• RSA-SHA224

• RSA-SHA256

• RSA-SHA384

• RSA-SHA512

• RSA-RMD160

• DSA-SHA1

• DSA-SHA224

• DSA-SHA256

• RSA-MD5

• RSA-MD2

Available compression methods:

• DEFLATE

• NULL

Some additional information regarding some of the algorithms:

RSA RSA is public key cryptosystem designed by Ronald Rivest, Adi Shamir and
Leonard Adleman. It can be used with any hash functions.

DSA DSA is the USA’s Digital Signature Standard. It uses only the SHA-1 hash
algorithm.

MD2 MD2 is a cryptographic hash algorithm designed by Ron Rivest. It is opti-
mized for 8-bit processors. Outputs 128 bits of data. There are several known
weaknesses of this algorithm and it should not be used.

MD5 MD5 is a cryptographic hash algorithm designed by Ron Rivest. Outputs 128
bits of data. It is considered to be broken.

Chapter 10: All the Supported Ciphersuites in GnuTLS 320

SHA-1 SHA is a cryptographic hash algorithm designed by NSA. Outputs 160 bits of
data. It is also considered to be broken, though no practical attacks have been
found.

RMD160 RIPEMD is a cryptographic hash algorithm developed in the framework of the
EU project RIPE. Outputs 160 bits of data.

Chapter 11: Guile Bindings 321

11 Guile Bindings

This chapter describes the GNU Guile Scheme programming interface to GnuTLS. The
reader is assumed to have basic knowledge of the protocol and library. Details missing from
this chapter may be found in Chapter 9 [Function reference], page 125.

At this stage, not all the C functions are available from Scheme, but a large subset thereof
is available.

11.1 Guile Preparations

The GnuTLS Guile bindings are by default installed under the GnuTLS installation direc-
tory (e.g., typically ‘/usr/local/share/guile/site/’). Normally Guile will not find the
module there without help. You may experience something like this:

$ guile

guile> (use-modules (gnutls))

<unnamed port>: no code for module (gnutls)

guile>

There are two ways to solve this. The first is to make sure that when building GnuTLS,
the Guile bindings will be installed in the same place where Guile looks. You may do this
by using the --with-guile-site-dir parameter as follows:

$./configure --with-guile-site-dir=no

This will instruct GnuTLS to attempt to install the Guile bindings where Guile will look
for them. It will use guile-config info pkgdatadir to learn the path to use.

If Guile was installed into /usr, you may also install GnuTLS using the same prefix:

$./configure --prefix=/usr

If you want to specify the path to install the Guile bindings you can also specify the path
directly:

$./configure --with-guile-site-dir=/opt/guile/share/guile/site

The second solution requires some more work but may be easier to use if you do not have
system administrator rights to your machine. You need to instruct Guile so that it finds the
GnuTLS Guile bindings. Either use the GUILE_LOAD_PATH environment variable as follows:

$ GUILE_LOAD_PATH="/usr/local/share/guile/site:$GUILE_LOAD_PATH" guile

guile> (use-modules (gnutls))

guile>

Alternatively, you can modify Guile’s %load-path variable (see Section “Build Config” in
The GNU Guile Reference Manual).

At this point, you might get an error regarding ‘libguile-gnutls-v-0’ similar to:

gnutls.scm:361:1: In procedure dynamic-link in expression (load-extension "libguile-gnutls-v-0" "scm_init_gnutls"):

gnutls.scm:361:1: file: "libguile-gnutls-v-0", message: "libguile-gnutls-v-0.so: cannot open shared object file: No such file or directory"

In this case, you will need to modify the run-time linker path, for example as follows:

$ LD_LIBRARY_PATH=/usr/local/lib GUILE_LOAD_PATH=/usr/local/share/guile/site guile

guile> (use-modules (gnutls))

guile>

http://www.gnu.org/software/guile/

Chapter 11: Guile Bindings 322

To check that you got the intended GnuTLS library version, you may print the version
number of the loaded library as follows:

$ guile

guile> (use-modules (gnutls))

guile> (gnutls-version)

"2.12.2"

guile>

11.2 Guile API Conventions

This chapter details the conventions used by Guile API, as well as specificities of the map-
ping of the C API to Scheme.

11.2.1 Enumerates and Constants

Lots of enumerates and constants are used in the GnuTLS C API. For each C enumerate
type, a disjoint Scheme type is used—thus, enumerate values and constants are not repre-
sented by Scheme symbols nor by integers. This makes it impossible to use an enumerate
value of the wrong type on the Scheme side: such errors are automatically detected by
type-checking.

The enumerate values are bound to variables exported by the (gnutls) and (gnutls

extra) modules. These variables are named according to the following convention:

• All variable names are lower-case; the underscore _ character used in the C API is
replaced by hyphen -.

• All variable names are prepended by the name of the enumerate type and the slash /

character.

• In some cases, the variable name is made more explicit than the one of the C API, e.g.,
by avoid abbreviations.

Consider for instance this C-side enumerate:

typedef enum

{

GNUTLS_CRD_CERTIFICATE = 1,

GNUTLS_CRD_ANON,

GNUTLS_CRD_SRP,

GNUTLS_CRD_PSK,

GNUTLS_CRD_IA

} gnutls_credentials_type_t;

The corresponding Scheme values are bound to the following variables exported by the
(gnutls) module:

credentials/certificate

credentials/anonymous

credentials/srp

credentials/psk

credentials/ia

Hopefully, most variable names can be deduced from this convention.

Chapter 11: Guile Bindings 323

Scheme-side “enumerate” values can be compared using eq? (see Section “Equality” in The
GNU Guile Reference Manual). Consider the following example:

(let ((session (make-session connection-end/client)))

;;

;; ...

;;

;; Check the ciphering algorithm currently used by SESSION.

(if (eq? cipher/arcfour (session-cipher session))

(format #t "We’re using the ARCFOUR algorithm")))

In addition, all enumerate values can be converted to a human-readable string,
in a type-specific way. For instance, (cipher->string cipher/arcfour) yields
"ARCFOUR 128", while (key-usage->string key-usage/digital-signature) yields
"digital-signature". Note that these strings may not be sufficient for use in a user
interface since they are fairly concise and not internationalized.

11.2.2 Procedure Names

Unlike C functions in GnuTLS, the corresponding Scheme procedures are named in a
way that is close to natural English. Abbreviations are also avoided. For instance, the
Scheme procedure corresponding to gnutls_certificate_set_dh_params is named set-

certificate-credentials-dh-parameters!. The gnutls_ prefix is always omitted from
variable names since a similar effect can be achieved using Guile’s nifty binding renam-
ing facilities, should it be needed (see Section “Using Guile Modules” in The GNU Guile
Reference Manual).

Often Scheme procedure names differ from C function names in a way that makes it clearer
what objects they operate on. For example, the Scheme procedure named set-session-

transport-port! corresponds to gnutls_transport_set_ptr, making it clear that this
procedure applies to session.

11.2.3 Representation of Binary Data

Many procedures operate on binary data. For instance, pkcs3-import-dh-parameters
expects binary data as input and, similarly, procedures like pkcs1-export-rsa-parameters
return binary data.

Binary data is represented on the Scheme side using SRFI-4 homogeneous vectors (see
Section “SRFI-4” in The GNU Guile Reference Manual). Although any type of homoge-
neous vector may be used, u8vectors (i.e., vectors of bytes) are highly recommended.

As an example, generating and then exporting RSA parameters in the PEM format can be
done as follows:

(let* ((rsa-params (make-rsa-parameters 1024))

(raw-data

(pkcs1-export-rsa-parameters rsa-params

x509-certificate-format/pem)))

(uniform-vector-write raw-data (open-output-file "some-file.pem")))

Chapter 11: Guile Bindings 324

For an example of OpenPGP key import from a file, see Section 11.3.3 [Importing OpenPGP
Keys Guile Example], page 328.

11.2.4 Input and Output

The underlying transport of a TLS session can be any Scheme input/output port (see
Section “Ports and File Descriptors” in The GNU Guile Reference Manual). This has to
be specified using set-session-transport-port!.

However, for better performance, a raw file descriptor can be specified, using set-session-
transport-fd!. For instance, if the transport layer is a socket port over an OS-provided
socket, you can use the port->fdes or fileno procedure to obtain the underlying file
descriptor and pass it to set-session-transport-fd! (see Section “Ports and File De-
scriptors” in The GNU Guile Reference Manual). This would work as follows:

(let ((socket (socket PF_INET SOCK_STREAM 0))

(session (make-session connection-end/client)))

;;

;; Establish a TCP connection...

;;

;; Use the file descriptor that underlies SOCKET.

(set-session-transport-fd! session (fileno socket)))

Once a TLS session is established, data can be communicated through it (i.e., via the TLS
record layer) using the port returned by session-record-port:

(let ((session (make-session connection-end/client)))

;;

;; Initialize the various parameters of SESSION, set up

;; a network connection, etc...

;;

(let ((i/o (session-record-port session)))

(write "Hello peer!" i/o)

(let ((greetings (read i/o)))

;; ...

(bye session close-request/rdwr))))

A lower-level I/O API is provided by record-send and record-receive! which take an
SRFI-4 vector to represent the data sent or received. While it might improve performance,
it is much less convenient than the above and should rarely be needed.

11.2.5 Exception Handling

GnuTLS errors are implemented as Scheme exceptions (see Section “Exceptions” in The
GNU Guile Reference Manual). Each time a GnuTLS function returns an error, an excep-
tion with key gnutls-error is raised. The additional arguments that are thrown include an

Chapter 11: Guile Bindings 325

error code and the name of the GnuTLS procedure that raised the exception. The error code
is pretty much like an enumerate value: it is one of the error/ variables exported by the
(gnutls) module (see Section 11.2.1 [Enumerates and Constants], page 322). Exceptions
can be turned into error messages using the error->string procedure.

The following examples illustrates how GnuTLS exceptions can be handled:

(let ((session (make-session connection-end/server)))

;;

;; ...

;;

(catch ’gnutls-error

(lambda ()

(handshake session))

(lambda (key err function . currently-unused)

(format (current-error-port)

"a GnuTLS error was raised by ‘~a’: ~a~%"

function (error->string err)))))

Again, error values can be compared using eq?:

;; ‘gnutls-error’ handler.

(lambda (key err function . currently-unused)

(if (eq? err error/fatal-alert-received)

(format (current-error-port)

"a fatal alert was caught!~%")

(format (current-error-port)

"something bad happened: ~a~%"

(error->string err))))

Note that the catch handler is currently passed only 3 arguments but future versions might
provide it with additional arguments. Thus, it must be prepared to handle more than 3
arguments, as in this example.

11.3 Guile Examples

This chapter provides examples that illustrate common use cases.

11.3.1 Anonymous Authentication Guile Example

Anonymous authentication is very easy to use. No certificates are needed by the commu-
nicating parties. Yet, it allows them to benefit from end-to-end encryption and integrity
checks.

The client-side code would look like this (assuming some-socket is bound to an open socket
port):

;; Client-side.

(let ((client (make-session connection-end/client)))

;; Use the default settings.

(set-session-default-priority! client)

Chapter 11: Guile Bindings 326

;; Don’t use certificate-based authentication.

(set-session-certificate-type-priority! client ’())

;; Request the "anonymous Diffie-Hellman" key exchange method.

(set-session-kx-priority! client (list kx/anon-dh))

;; Specify the underlying socket.

(set-session-transport-fd! client (fileno some-socket))

;; Create anonymous credentials.

(set-session-credentials! client

(make-anonymous-client-credentials))

;; Perform the TLS handshake with the server.

(handshake client)

;; Send data over the TLS record layer.

(write "hello, world!" (session-record-port client))

;; Terminate the TLS session.

(bye client close-request/rdwr))

The corresponding server would look like this (again, assuming some-socket is bound to a
socket port):

;; Server-side.

(let ((server (make-session connection-end/server)))

(set-session-default-priority! server)

(set-session-certificate-type-priority! server ’())

(set-session-kx-priority! server (list kx/anon-dh))

;; Specify the underlying transport socket.

(set-session-transport-fd! server (fileno some-socket))

;; Create anonymous credentials.

(let ((cred (make-anonymous-server-credentials))

(dh-params (make-dh-parameters 1024)))

;; Note: DH parameter generation can take some time.

(set-anonymous-server-dh-parameters! cred dh-params)

(set-session-credentials! server cred))

;; Perform the TLS handshake with the client.

(handshake server)

;; Receive data over the TLS record layer.

(let ((message (read (session-record-port server))))

Chapter 11: Guile Bindings 327

(format #t "received the following message: ~a~%"

message)

(bye server close-request/rdwr)))

This is it!

11.3.2 OpenPGP Authentication Guile Example

GnuTLS allows users to authenticate using OpenPGP certificates. The relevant procedures
are provided by the (gnutls extra) module. Using OpenPGP-based authentication is not
more complicated than using anonymous authentication. It requires a bit of extra work,
though, to import the OpenPGP public and private key of the client/server. Key import is
omitted here and is left as an exercise to the reader (see Section 11.3.3 [Importing OpenPGP
Keys Guile Example], page 328).

Assuming some-socket is bound to an open socket port and pub and sec are bound to the
client’s OpenPGP public and secret key, respectively, client-side code would look like this:

;; Client-side.

(define %certs (list certificate-type/openpgp))

(let ((client (make-session connection-end/client))

(cred (make-certificate-credentials)))

(set-session-default-priority! client)

;; Choose OpenPGP certificates.

(set-session-certificate-type-priority! client %certs)

;; Prepare appropriate client credentials.

(set-certificate-credentials-openpgp-keys! cred pub sec)

(set-session-credentials! client cred)

;; Specify the underlying transport socket.

(set-session-transport-fd! client (fileno some-socket))

(handshake client)

(write "hello, world!" (session-record-port client))

(bye client close-request/rdwr))

Similarly, server-side code would be along these lines:

;; Server-side.

(define %certs (list certificate-type/openpgp))

(let ((server (make-session connection-end/server))

(rsa (make-rsa-parameters 1024))

(dh (make-dh-parameters 1024)))

(set-session-default-priority! server)

Chapter 11: Guile Bindings 328

;; Choose OpenPGP certificates.

(set-session-certificate-type-priority! server %certs)

(let ((cred (make-certificate-credentials)))

;; Prepare credentials with RSA and Diffie-Hellman parameters.

(set-certificate-credentials-dh-parameters! cred dh)

(set-certificate-credentials-rsa-export-parameters! cred rsa)

(set-certificate-credentials-openpgp-keys! cred pub sec)

(set-session-credentials! server cred))

(set-session-transport-fd! server (fileno some-socket))

(handshake server)

(let ((msg (read (session-record-port server))))

(format #t "received: ~a~%" msg)

(bye server close-request/rdwr)))

In practice, generating RSA parameters (and Diffie-Hellman parameters) can time a long
time. Thus, you may want to generate them once and store them in a file for future re-use
(see Section 11.4.1 [Core Interface], page 329).

11.3.3 Importing OpenPGP Keys Guile Example

The following example provides a simple way of importing “ASCII-armored” OpenPGP
keys from files, using the import-openpgp-certificate and import-openpgp-private-

key procedures provided by the (gnutls extra) module.

(use-modules (srfi srfi-4)

(gnutls extra))

(define (import-key-from-file import-proc file)

;; Import OpenPGP key from FILE using IMPORT-PROC.

;; Prepare a u8vector large enough to hold the raw

;; key contents.

(let* ((size (stat:size (stat path)))

(raw (make-u8vector size)))

;; Fill in the u8vector with the contents of FILE.

(uniform-vector-read! raw (open-input-file file))

;; Pass the u8vector to the import procedure.

(import-proc raw openpgp-certificate-format/base64)))

(define (import-public-key-from-file file)

(import-key-from-file import-openpgp-certificate file))

Chapter 11: Guile Bindings 329

(define (import-private-key-from-file file)

(import-key-from-file import-openpgp-private-key file))

The procedures import-public-key-from-file and import-private-key-from-file can
be passed a file name. They return an OpenPGP public key and private key object, respec-
tively (see Section 11.4.2 [Extra Interface], page 337).

11.4 Guile Reference

This chapter documents GnuTLS Scheme procedures available to Guile programmers.

11.4.1 Core Interface

This section lists the Scheme procedures exported by the (gnutls) module (see Section
“The Guile module system” in The GNU Guile Reference Manual). This module is licenced
under the GNU Lesser General Public Licence, version 2.1 or later.

[Scheme Procedure]set-log-level! level
Enable GnuTLS logging up to level (an integer).

[Scheme Procedure]set-log-procedure! proc
Use proc (a two-argument procedure) as the global GnuTLS log procedure.

[Scheme Procedure]x509-certificate-subject-alternative-name cert index
Return two values: the alternative name type for cert (i.e., one of the x509-subject-
alternative-name/ values) and the actual subject alternative name (a string) at
index. Both values are #f if no alternative name is available at index.

[Scheme Procedure]x509-certificate-subject-key-id cert
Return the subject key ID (a u8vector) for cert.

[Scheme Procedure]x509-certificate-authority-key-id cert
Return the key ID (a u8vector) of the X.509 certificate authority of cert.

[Scheme Procedure]x509-certificate-key-id cert
Return a statistically unique ID (a u8vector) for cert that depends on its public key
parameters. This is normally a 20-byte SHA-1 hash.

[Scheme Procedure]x509-certificate-version cert
Return the version of cert.

[Scheme Procedure]x509-certificate-key-usage cert
Return the key usage of cert (i.e., a list of key-usage/ values), or the empty list if
cert does not contain such information.

[Scheme Procedure]x509-certificate-public-key-algorithm cert
Return two values: the public key algorithm (i.e., one of the pk-algorithm/ values)
of cert and the number of bits used.

[Scheme Procedure]x509-certificate-signature-algorithm cert
Return the signature algorithm used by cert (i.e., one of the sign-algorithm/ values).

Chapter 11: Guile Bindings 330

[Scheme Procedure]x509-certificate-matches-hostname? cert hostname
Return true if cert matches hostname, a string denoting a DNS host name. This is
the basic implementation of RFC 2818 (aka. HTTPS).

[Scheme Procedure]x509-certificate-issuer-dn-oid cert index
Return the OID (a string) at index from cert’s issuer DN. Return #f if no OID is
available at index.

[Scheme Procedure]x509-certificate-dn-oid cert index
Return OID (a string) at index from cert. Return #f if no OID is available at index.

[Scheme Procedure]x509-certificate-issuer-dn cert
Return the distinguished name (DN) of X.509 certificate cert.

[Scheme Procedure]x509-certificate-dn cert
Return the distinguished name (DN) of X.509 certificate cert. The form of the DN is
as described in RFC 2253.

[Scheme Procedure]pkcs8-import-x509-private-key data format [pass
[encrypted]]

Return a new X.509 private key object resulting from the import of data (a uniform
array) according to format. Optionally, if pass is not #f, it should be a string denoting
a passphrase. encrypted tells whether the private key is encrypted (#t by default).

[Scheme Procedure]import-x509-private-key data format
Return a new X.509 private key object resulting from the import of data (a uniform
array) according to format.

[Scheme Procedure]import-x509-certificate data format
Return a new X.509 certificate object resulting from the import of data (a uniform
array) according to format.

[Scheme Procedure]server-session-psk-username session
Return the username associated with PSK server session session.

[Scheme Procedure]set-psk-client-credentials! cred username key key-format
Set the client credentials for cred, a PSK client credentials object.

[Scheme Procedure]make-psk-client-credentials
Return a new PSK client credentials object.

[Scheme Procedure]set-psk-server-credentials-file! cred file
Use file as the password file for PSK server credentials cred.

[Scheme Procedure]make-psk-server-credentials
Return new PSK server credentials.

[Scheme Procedure]peer-certificate-status session
Verify the peer certificate for session and return a list of certificate-status values
(such as certificate-status/revoked), or the empty list if the certificate is valid.

http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2253

Chapter 11: Guile Bindings 331

[Scheme Procedure]set-certificate-credentials-verify-flags! cred
[flags...]

Set the certificate verification flags to flags, a series of certificate-verify values.

[Scheme Procedure]set-certificate-credentials-verify-limits! cred
max-bits max-depth

Set the verification limits of peer-certificate-status for certificate credentials
cred to max bits bits for an acceptable certificate and max depth as the maximum
depth of a certificate chain.

[Scheme Procedure]set-certificate-credentials-x509-keys! cred certs
privkey

Have certificate credentials cred use the X.509 certificates listed in certs and X.509
private key privkey .

[Scheme Procedure]set-certificate-credentials-x509-key-data! cred cert
key format

Use X.509 certificate cert and private key key , both uniform arrays containing the
X.509 certificate and key in format format, for certificate credentials cred.

[Scheme Procedure]set-certificate-credentials-x509-crl-data! cred data
format

Use data (a uniform array) as the X.509 CRL (certificate revocation list) database
for cred. On success, return the number of CRLs processed.

[Scheme Procedure]set-certificate-credentials-x509-trust-data! cred
data format

Use data (a uniform array) as the X.509 trust database for cred. On success, return
the number of certificates processed.

[Scheme Procedure]set-certificate-credentials-x509-crl-file! cred file
format

Use file as the X.509 CRL (certificate revocation list) file for certificate credentials
cred. On success, return the number of CRLs processed.

[Scheme Procedure]set-certificate-credentials-x509-trust-file! cred file
format

Use file as the X.509 trust file for certificate credentials cred. On success, return the
number of certificates processed.

[Scheme Procedure]set-certificate-credentials-x509-key-files! cred
cert-file key-file format

Use file as the password file for PSK server credentials cred.

[Scheme Procedure]set-certificate-credentials-rsa-export-parameters!
cred rsa-params

Use RSA parameters rsa params for certificate credentials cred.

[Scheme Procedure]set-certificate-credentials-dh-parameters! cred
dh-params

Use Diffie-Hellman parameters dh params for certificate credentials cred.

Chapter 11: Guile Bindings 332

[Scheme Procedure]make-certificate-credentials
Return new certificate credentials (i.e., for use with either X.509 or OpenPGP cer-
tificates.

[Scheme Procedure]pkcs1-export-rsa-parameters rsa-params format
Export Diffie-Hellman parameters rsa params in PKCS1 format according for format
(an x509-certificate-format value). Return a u8vector containing the result.

[Scheme Procedure]pkcs1-import-rsa-parameters array format
Import Diffie-Hellman parameters in PKCS1 format (further specified by format, an
x509-certificate-format value) from array (a homogeneous array) and return a
new rsa-params object.

[Scheme Procedure]make-rsa-parameters bits
Return new RSA parameters.

[Scheme Procedure]set-anonymous-server-dh-parameters! cred dh-params
Set the Diffie-Hellman parameters of anonymous server credentials cred.

[Scheme Procedure]make-anonymous-client-credentials
Return anonymous client credentials.

[Scheme Procedure]make-anonymous-server-credentials
Return anonymous server credentials.

[Scheme Procedure]set-session-dh-prime-bits! session bits
Use bits DH prime bits for session.

[Scheme Procedure]pkcs3-export-dh-parameters dh-params format
Export Diffie-Hellman parameters dh params in PKCS3 format according for format
(an x509-certificate-format value). Return a u8vector containing the result.

[Scheme Procedure]pkcs3-import-dh-parameters array format
Import Diffie-Hellman parameters in PKCS3 format (further specified by format, an
x509-certificate-format value) from array (a homogeneous array) and return a
new dh-params object.

[Scheme Procedure]make-dh-parameters bits
Return new Diffie-Hellman parameters.

[Scheme Procedure]set-session-transport-port! session port
Use port as the input/output port for session.

[Scheme Procedure]set-session-transport-fd! session fd
Use file descriptor fd as the underlying transport for session.

[Scheme Procedure]session-record-port session
Return a read-write port that may be used to communicate over session. All invo-
cations of session-port on a given session return the same object (in the sense of
eq?).

Chapter 11: Guile Bindings 333

[Scheme Procedure]record-receive! session array
Receive data from session into array , a uniform homogeneous array. Return the
number of bytes actually received.

[Scheme Procedure]record-send session array
Send the record constituted by array through session.

[Scheme Procedure]set-session-credentials! session cred
Use cred as session’s credentials.

[Scheme Procedure]cipher-suite->string kx cipher mac
Return the name of the given cipher suite.

[Scheme Procedure]set-session-default-export-priority! session
Have session use the default export priorities.

[Scheme Procedure]set-session-default-priority! session
Have session use the default priorities.

[Scheme Procedure]set-session-certificate-type-priority! session items
Use items (a list) as the list of preferred certificate-type for session.

[Scheme Procedure]set-session-protocol-priority! session items
Use items (a list) as the list of preferred protocol for session.

[Scheme Procedure]set-session-kx-priority! session items
Use items (a list) as the list of preferred kx for session.

[Scheme Procedure]set-session-compression-method-priority! session items
Use items (a list) as the list of preferred compression-method for session.

[Scheme Procedure]set-session-mac-priority! session items
Use items (a list) as the list of preferred mac for session.

[Scheme Procedure]set-session-cipher-priority! session items
Use items (a list) as the list of preferred cipher for session.

[Scheme Procedure]set-server-session-certificate-request! session request
Tell how session, a server-side session, should deal with certificate requests.
request should be either certificate-request/request or certificate-

request/require.

[Scheme Procedure]session-our-certificate-chain session
Return our certificate chain for session (as sent to the peer) in raw format (a u8vector).
In the case of OpenPGP there is exactly one certificate. Return the empty list if no
certificate was used.

[Scheme Procedure]session-peer-certificate-chain session
Return the a list of certificates in raw format (u8vectors) where the first one is the
peer’s certificate. In the case of OpenPGP, there is always exactly one certificate. In
the case of X.509, subsequent certificates indicate form a certificate chain. Return
the empty list if no certificate was sent.

Chapter 11: Guile Bindings 334

[Scheme Procedure]session-client-authentication-type session
Return the client authentication type (a credential-type value) used in session.

[Scheme Procedure]session-server-authentication-type session
Return the server authentication type (a credential-type value) used in session.

[Scheme Procedure]session-authentication-type session
Return the authentication type (a credential-type value) used by session.

[Scheme Procedure]session-protocol session
Return the protocol used by session.

[Scheme Procedure]session-certificate-type session
Return session’s certificate type.

[Scheme Procedure]session-compression-method session
Return session’s compression method.

[Scheme Procedure]session-mac session
Return session’s MAC.

[Scheme Procedure]session-kx session
Return session’s kx.

[Scheme Procedure]session-cipher session
Return session’s cipher.

[Scheme Procedure]alert-send session level alert
Send alert via session.

[Scheme Procedure]alert-get session
Get an aleter from session.

[Scheme Procedure]rehandshake session
Perform a re-handshaking for session.

[Scheme Procedure]handshake session
Perform a handshake for session.

[Scheme Procedure]bye session how
Close session according to how .

[Scheme Procedure]make-session end
Return a new session for connection end end, either connection-end/server or
connection-end/client.

[Scheme Procedure]gnutls-version
Return a string denoting the version number of the underlying GnuTLS library, e.g.,
"1.7.2".

[Scheme Procedure]x509-private-key? obj
Return true if obj is of type x509-private-key.

Chapter 11: Guile Bindings 335

[Scheme Procedure]x509-certificate? obj
Return true if obj is of type x509-certificate.

[Scheme Procedure]psk-client-credentials? obj
Return true if obj is of type psk-client-credentials.

[Scheme Procedure]psk-server-credentials? obj
Return true if obj is of type psk-server-credentials.

[Scheme Procedure]srp-client-credentials? obj
Return true if obj is of type srp-client-credentials.

[Scheme Procedure]srp-server-credentials? obj
Return true if obj is of type srp-server-credentials.

[Scheme Procedure]certificate-credentials? obj
Return true if obj is of type certificate-credentials.

[Scheme Procedure]rsa-parameters? obj
Return true if obj is of type rsa-parameters.

[Scheme Procedure]dh-parameters? obj
Return true if obj is of type dh-parameters.

[Scheme Procedure]anonymous-server-credentials? obj
Return true if obj is of type anonymous-server-credentials.

[Scheme Procedure]anonymous-client-credentials? obj
Return true if obj is of type anonymous-client-credentials.

[Scheme Procedure]session? obj
Return true if obj is of type session.

[Scheme Procedure]error->string enumval
Return a string describing enumval, a error value.

[Scheme Procedure]certificate-verify->string enumval
Return a string describing enumval, a certificate-verify value.

[Scheme Procedure]key-usage->string enumval
Return a string describing enumval, a key-usage value.

[Scheme Procedure]psk-key-format->string enumval
Return a string describing enumval, a psk-key-format value.

[Scheme Procedure]sign-algorithm->string enumval
Return a string describing enumval, a sign-algorithm value.

[Scheme Procedure]pk-algorithm->string enumval
Return a string describing enumval, a pk-algorithm value.

[Scheme Procedure]x509-subject-alternative-name->string enumval
Return a string describing enumval, a x509-subject-alternative-name value.

Chapter 11: Guile Bindings 336

[Scheme Procedure]x509-certificate-format->string enumval
Return a string describing enumval, a x509-certificate-format value.

[Scheme Procedure]certificate-type->string enumval
Return a string describing enumval, a certificate-type value.

[Scheme Procedure]protocol->string enumval
Return a string describing enumval, a protocol value.

[Scheme Procedure]close-request->string enumval
Return a string describing enumval, a close-request value.

[Scheme Procedure]certificate-request->string enumval
Return a string describing enumval, a certificate-request value.

[Scheme Procedure]certificate-status->string enumval
Return a string describing enumval, a certificate-status value.

[Scheme Procedure]handshake-description->string enumval
Return a string describing enumval, a handshake-description value.

[Scheme Procedure]alert-description->string enumval
Return a string describing enumval, a alert-description value.

[Scheme Procedure]alert-level->string enumval
Return a string describing enumval, a alert-level value.

[Scheme Procedure]connection-end->string enumval
Return a string describing enumval, a connection-end value.

[Scheme Procedure]compression-method->string enumval
Return a string describing enumval, a compression-method value.

[Scheme Procedure]digest->string enumval
Return a string describing enumval, a digest value.

[Scheme Procedure]mac->string enumval
Return a string describing enumval, a mac value.

[Scheme Procedure]credentials->string enumval
Return a string describing enumval, a credentials value.

[Scheme Procedure]params->string enumval
Return a string describing enumval, a params value.

[Scheme Procedure]kx->string enumval
Return a string describing enumval, a kx value.

[Scheme Procedure]cipher->string enumval
Return a string describing enumval, a cipher value.

Chapter 11: Guile Bindings 337

11.4.2 Extra Interface

This section lists the Scheme procedures exported by the (gnutls extra) module. This
module is licenced under the GNU General Public Licence, version 3 or later.

[Scheme Procedure]set-certificate-credentials-openpgp-keys! cred pub
sec

Use certificate pub and secret key sec in certificate credentials cred.

[Scheme Procedure]openpgp-keyring-contains-key-id? keyring id
Return #f if key ID id is in keyring , #f otherwise.

[Scheme Procedure]import-openpgp-keyring data format
Import data (a u8vector) according to format and return the imported keyring.

[Scheme Procedure]openpgp-certificate-usage key
Return a list of values denoting the key usage of key .

[Scheme Procedure]openpgp-certificate-version key
Return the version of the OpenPGP message format (RFC2440) honored by key .

[Scheme Procedure]openpgp-certificate-algorithm key
Return two values: the certificate algorithm used by key and the number of bits used.

[Scheme Procedure]openpgp-certificate-names key
Return the list of names for key .

[Scheme Procedure]openpgp-certificate-name key index
Return the indexth name of key .

[Scheme Procedure]openpgp-certificate-fingerprint key
Return a new u8vector denoting the fingerprint of key .

[Scheme Procedure]openpgp-certificate-fingerprint! key fpr
Store in fpr (a u8vector) the fingerprint of key . Return the number of bytes stored
in fpr.

[Scheme Procedure]openpgp-certificate-id! key id
Store the ID (an 8 byte sequence) of certificate key in id (a u8vector).

[Scheme Procedure]openpgp-certificate-id key
Return the ID (an 8-element u8vector) of certificate key .

[Scheme Procedure]import-openpgp-private-key data format [pass]
Return a new OpenPGP private key object resulting from the import of data (a
uniform array) according to format. Optionally, a passphrase may be provided.

[Scheme Procedure]import-openpgp-certificate data format
Return a new OpenPGP certificate object resulting from the import of data (a uniform
array) according to format.

[Scheme Procedure]openpgp-certificate-format->string enumval
Return a string describing enumval, a openpgp-certificate-format value.

Chapter 11: Guile Bindings 338

[Scheme Procedure]openpgp-keyring? obj
Return true if obj is of type openpgp-keyring.

[Scheme Procedure]openpgp-private-key? obj
Return true if obj is of type openpgp-private-key.

[Scheme Procedure]openpgp-certificate? obj
Return true if obj is of type openpgp-certificate.

Chapter 12: Internal Architecture of GnuTLS 339

12 Internal Architecture of GnuTLS

This chapter is to give a brief description of the way GnuTLS works. The focus is to give
an idea to potential developers and those who want to know what happens inside the black
box.

12.1 The TLS Protocol

The main needs for the TLS protocol to be used are shown in the image below.

This is being accomplished by the following object diagram. Note that since
GnuTLS is being developed in C object are just structures with attributes. The

Chapter 12: Internal Architecture of GnuTLS 340

operations listed are functions that require the first parameter to be that object.

12.2 TLS Handshake Protocol

The GnuTLS handshake protocol is implemented as a state machine that waits for input or
returns immediately when the non-blocking transport layer functions are used. The main
idea is shown in the following figure.

Also the way the input is processed varies per ciphersuite. Several implementations of the
internal handlers are available and [gnutls handshake], page 161 only multiplexes the input

Chapter 12: Internal Architecture of GnuTLS 341

to the appropriate handler. For example a PSK ciphersuite has a different implementation
of the process_client_key_exchange than a certificate ciphersuite.

12.3 TLS Authentication Methods

In GnuTLS authentication methods can be implemented quite easily. Since the required
changes to add a new authentication method affect only the handshake protocol, a simple
interface is used. An authentication method needs only to implement the functions as seen
in the figure below.

The functions that need to be implemented are the ones responsible for interpreting the
handshake protocol messages. It is common for such functions to read data from one or

Chapter 12: Internal Architecture of GnuTLS 342

more credentials_t structures1 and write data, such as certificates, usernames etc. to
auth_info_t structures.

Simple examples of existing authentication methods can be seen in auth_psk.c for PSK
ciphersuites and auth_srp.c for SRP ciphersuites. After implementing these functions the
structure holding its pointers has to be registered in gnutls_algorithms.c in the _gnutls_
kx_algorithms structure.

12.4 TLS Extension Handling

As with authentication methods, the TLS extensions handlers can be implemented using
the following interface.

Here there are two functions, one for receiving the extension data and one for sending.
These functions have to check internally whether they operate in client or server side.

A simple example of an extension handler can be seen in ext_srp.c After implementing
these functions, together with the extension number they handle, they have to be registered
in gnutls_extensions.c in the _gnutls_extensions structure.

12.4.1 Adding a New TLS Extension

Adding support for a new TLS extension is done from time to time, and the process to do
so is not difficult. Here are the steps you need to follow if you wish to do this yourself. For
sake of discussion, let’s consider adding support for the hypothetical TLS extension foobar.

1. Add configure option like --enable-foobar or --disable-foobar.

This step is useful when the extension code is large and it might be desirable to disable
the extension under some circumstances. Otherwise it can be safely skipped.

Whether to chose enable or disable depends on whether you intend to make the exten-
sion be enabled by default. Look at existing checks (i.e., SRP, authz) for how to model
the code. For example:

AC_MSG_CHECKING([whether to disable foobar support])

AC_ARG_ENABLE(foobar,

AS_HELP_STRING([--disable-foobar],

[disable foobar support]),

ac_enable_foobar=no)

if test x$ac_enable_foobar != xno; then

AC_MSG_RESULT(no)

AC_DEFINE(ENABLE_FOOBAR, 1, [enable foobar])

else

1 such as the gnutls_certificate_credentials_t structures

Chapter 12: Internal Architecture of GnuTLS 343

ac_full=0

AC_MSG_RESULT(yes)

fi

AM_CONDITIONAL(ENABLE_FOOBAR, test "$ac_enable_foobar" != "no")

These lines should go in lib/m4/hooks.m4.

2. Add IANA extension value to extensions_t in gnutls_int.h.

A good name for the value would be GNUTLS EXTENSION FOOBAR. Check with
http://www.iana.org/assignments/tls-extensiontype-values for allocated val-
ues. For experiments, you could pick a number but remember that some consider
it a bad idea to deploy such modified version since it will lead to interoperability prob-
lems in the future when the IANA allocates that number to someone else, or when the
foobar protocol is allocated another number.

3. Add an entry to _gnutls_extensions in gnutls_extensions.c.

A typical entry would be:

int ret;

/* ...

*/

#if ENABLE_FOOBAR

ret = _gnutls_ext_register (&foobar_ext);

if (ret != GNUTLS_E_SUCCESS)

return ret;

#endif

Most likely you’ll need to add an #include "ext_foobar.h", that will contain some-
thing like like:

extension_entry_st foobar_ext = {

.name = "FOOBAR",

.type = GNUTLS_EXTENSION_FOOBAR,

.parse_type = GNUTLS_EXT_TLS,

.recv_func = _foobar_recv_params,

.send_func = _foobar_send_params,

.pack_func = _foobar_pack,

.unpack_func = _foobar_unpack,

.deinit_func = NULL

}

The GNUTLS EXTENSION FOOBAR is the integer value you added to gnutls_

int.h earlier. In this structure you specify the functions to read the extension from
the hello message, the function to send the reply to, and two more functions to pack
and unpack from stored session data (e.g. when resumming a session). The deinit

function will be called to deinitialize the extension’s private parameters, if any.

Note that the conditional ENABLE_FOOBAR definition should only be used if step 1 with
the configure options has taken place.

http://www.iana.org/assignments/tls-extensiontype-values

Chapter 12: Internal Architecture of GnuTLS 344

4. Add new files ext_foobar.c and ext_foobar.h that implement the extension.

The functions you are responsible to add are those mentioned in the previous step. As
a starter, you could add this:

int

_foobar_recv_params (gnutls_session_t session,

const opaque * data,

size_t data_size)

{

return 0;

}

int

_foobar_send_params (gnutls_session_t session,

opaque * data,

size_t _data_size)

{

return 0;

}

int

_foobar_pack (extension_priv_data_t epriv, gnutls_buffer_st * ps)

{

/* Append the extension’s internal state to buffer */

return 0;

}

int

_foobar_unpack (gnutls_buffer_st * ps, extension_priv_data_t * epriv)

{

/* Read the internal state from buffer */

return 0;

}

The _foobar_recv_params function is responsible for parsing incoming extension data
(both in the client and server).

The _foobar_send_params function is responsible for sending extension data (both in
the client and server).

The _foobar_pack function is responsible for packing internal extension data to save
them in the session storage.

The _foobar_unpack function is responsible for restoring session data from the session
storage.

If you receive length fields that doesn’t match, return GNUTLS_E_UNEXPECTED_PACKET_

LENGTH. If you receive invalid data, return GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER.
You can use other error codes too. Return 0 on success.

The function could store some information in the session variable for later usage.
That can be done using the functions _gnutls_ext_set_session_data and _gnutls_

Chapter 12: Internal Architecture of GnuTLS 345

ext_get_session_data. You can check simple examples at ext_max_record.c and
ext_server_name.c extensions.

Recall that both the client and server both send and receives parameters, and your
code most likely will need to do different things depending on which mode it is in. It
may be useful to make this distinction explicit in the code. Thus, for example, a better
template than above would be:

int

_gnutls_foobar_recv_params (gnutls_session_t session,

const opaque * data,

size_t data_size)

{

if (session->security_parameters.entity == GNUTLS_CLIENT)

return foobar_recv_client (session, data, data_size);

else

return foobar_recv_server (session, data, data_size);

}

int

_gnutls_foobar_send_params (gnutls_session_t session,

opaque * data,

size_t data_size)

{

if (session->security_parameters.entity == GNUTLS_CLIENT)

return foobar_send_client (session, data, data_size);

else

return foobar_send_server (session, data, data_size);

}

The functions used would be declared as static functions, of the appropriate proto-
type, in the same file.

When adding the files, you’ll need to add them to Makefile.am as well, for example:

if ENABLE_FOOBAR

COBJECTS += ext_foobar.c

HFILES += ext_foobar.h

endif

5. Add API functions to enable/disable the extension.

Normally the client will have one API to request use of the extension, and setting some
extension specific data. The server will have one API to let the library know that it
is willing to accept the extension, often this is implemented through a callback but it
doesn’t have to.

The APIs need to be added to includes/gnutls/gnutls.h or includes/gnutls/extra.h
as appropriate. It is recommended that if you don’t have a requirement to use the
LGPLv2.1+ license for your extension, that you place your work under the GPLv3+
license and thus in the libgnutls-extra library.

You can implement the API function in the ext_foobar.c file, or if that file ends up
becoming rather larger, add a gnutls_foobar.c file.

Chapter 12: Internal Architecture of GnuTLS 346

To make the API available in the shared library you need to add the symbol in
lib/libgnutls.map or libextra/libgnutls-extra.map as appropriate, so that the
symbol is exported properly.

When writing GTK-DOC style documentation for your new APIs, don’t forget to add
Since: tags to indicate the GnuTLS version the API was introduced in.

12.5 Certificate Handling

What is provided by the certificate handling functions is summarized in the following dia-
gram.

Chapter 12: Internal Architecture of GnuTLS 347

12.6 Cryptographic Backend

Today most new processors, either for embedded or desktop systems include either instruc-
tions intended to speed up cryptographic operations, or a co-processor with cryptographic
capabilities. Taking advantage of those is a challenging task for every cryptographic applica-
tion or library. Unfortunately the cryptographic libraries that GnuTLS is based on take no
advantage of these properties. For this reason GnuTLS handles this internally by following
a layered approach to accessing cryptographic operations as in the following figure.

The TLS layer uses a cryptographic provider layer, that will in turn either use the default
crypto provider - a crypto library, or use an external crypto provider, if available.

12.6.1 Cryptographic Library layer

The Cryptographic Library layer, can currently be used either with libgcrypt or libnettle,
each of one has its advantages and some disadvantages. Libgcrypt is a self-contained library,
pretty broad in scope that supports many algorithms. In some processors like VIA, it will
also use the available crypto instruction set hence providing performance benefit comparing
to plain software implementation. Libnettle provides only software implementation of the
basic algorithms required in TLS, and is on average 30% faster that libgcrypt on almost all
algorithms. For this reason libnettle is library used by default in GnuTLS.

12.6.2 External cryptography provider

Systems that include a cryptographic co-processor, typically come with kernel drivers to
utilize the operations from software. For this reason GnuTLS provides a layer where each

Chapter 12: Internal Architecture of GnuTLS 348

individual algorithm used can be replaced by another implementation, i.e. the one provided
by the driver. The FreeBSD, OpenBSD and Linux kernels2 include already a number
of hardware assisted implementations, and also provide an interface to access them, called
/dev/crypto. GnuTLS will take advantage of this interface if compiled with special options.
That is because in most systems where hardware-assisted cryptographic operations are not
available, using this interface might actually reduce performance.

It is possible to override parts of crypto backend both at runtime and compile time.
Here we discuss the runtime possibility. The API available for this functionality is in
gnutls/crypto.h header file.

12.6.2.1 Override specific algorithms

When an optimized implementation of a single algorithm is available, say a hardware as-
sisted version of AES-CBC then the following functions can be used to register those algo-
rithms.

• [gnutls crypto single cipher register2], page 149 To register a cipher algorithm.

[gnutls crypto single digest register2], page 150 To register a hash (digest) or MAC
algorithm.

Those registration functions will only replace the specified algorithm and leave the rest of
subsystem intact.

12.6.2.2 Override parts of the backend

In some systems, such as embedded ones, it might be desirable to override big parts of
the cryptographic backend, or even all of them. For this reason the following functions are
provided.

• [gnutls crypto cipher register2], page 147 To override the cryptographic algorithms
backend.

• [gnutls crypto digest register2], page 148 To override the digest algorithms backend.

• [gnutls crypto rnd register2], page 149 To override the random number generator back-
end.

• [gnutls crypto bigint register2], page 147 To override the big number number opera-
tions backend.

• [gnutls crypto pk register2], page 149 To override the public key encryption backend.
This is tight to the big number operations so either both of them should be updated
or care must be taken to use the same format.

If all of them are used then GnuTLS will no longer use libgcrypt.

2 Check http://home.gna.org/cryptodev-linux/ for the Linux kernel implementation of /dev/crypto.

http://home.gna.org/cryptodev-linux/

Appendix A: Copying Information 349

Appendix A Copying Information

A.1 GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

http://fsf.org/

Appendix A: Copying Information 350

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix A: Copying Information 351

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix A: Copying Information 352

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix A: Copying Information 353

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying Information 354

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: Copying Information 355

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: Copying Information 356

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

A.2 GNU Lesser General Public License
Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who
decide to use it. You can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better strategy to use in any
particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish); that you receive source code or
can get it if you want it; that you can change the software and use pieces of it in new free
programs; and that you are informed that you can do these things.

Appendix A: Copying Information 357

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by
obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free
programs must be allowed to use the library. A more frequent case is that a free library
does the same job as widely used non-free libraries. In this case, there is little to gain by
limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the
GNU C Library in non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating system.

Appendix A: Copying Information 358

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

Appendix A: Copying Information 359

b. You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data to
be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

Appendix A: Copying Information 360

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

Appendix A: Copying Information 361

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you

Appendix A: Copying Information 362

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

Appendix A: Copying Information 363

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix A: Copying Information 364

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and
each file should have at least the “copyright” line and a pointer to where the full notice is
found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,

USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

A.3 GNU General Public License
Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is

http://fsf.org/

Appendix A: Copying Information 365

intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs, and that
you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in
those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

Appendix A: Copying Information 366

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition

Appendix A: Copying Information 367

files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

Appendix A: Copying Information 368

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

Appendix A: Copying Information 369

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself

Appendix A: Copying Information 370

materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

Appendix A: Copying Information 371

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

Appendix A: Copying Information 372

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of

Appendix A: Copying Information 373

distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN

Appendix A: Copying Information 374

WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Appendix A: Copying Information 375

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign
a “copyright disclaimer” for the program, if necessary. For more information on this, and
how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Bibliography 376

Bibliography

[CBCATT]
Bodo Moeller, "Security of CBC Ciphersuites in SSL/TLS: Problems and Coun-
termeasures", 2002, available from http://www.openssl.org/~bodo/tls-cbc.txt.

[GPGH] Mike Ashley, "The GNU Privacy Handbook", 2002, available from
http://www.gnupg.org/gph/en/manual.pdf.

[GUTPKI]
Peter Gutmann, "Everything you never wanted to know about PKI but were
forced to find out", Available from http://www.cs.auckland.ac.nz/~pgut001/.

[NISTSP80057]
NIST Special Publication 800-57, "Recommendation for Key Man-
agement - Part 1: General (Revised)", March 2007, available from
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_

Mar08-2007.pdf.

[RFC2246]
Tim Dierks and Christopher Allen, "The TLS Protocol Version 1.0", January
1999, Available from http://www.ietf.org/rfc/rfc2246.txt.

[RFC4346]
Tim Dierks and Eric Rescorla, "The TLS Protocol Version 1.1", Match 2006,
Available from http://www.ietf.org/rfc/rfc4346.txt.

[RFC2440]
Jon Callas, Lutz Donnerhacke, Hal Finney and Rodney Thayer,
"OpenPGP Message Format", November 1998, Available from
http://www.ietf.org/rfc/rfc2440.txt.

[RFC4880]
Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw and Rodney
Thayer, "OpenPGP Message Format", November 2007, Available from
http://www.ietf.org/rfc/rfc4880.txt.

[RFC4211]
J. Schaad, "Internet X.509 Public Key Infrastructure Certificate Re-
quest Message Format (CRMF)", September 2005, Available from
http://www.ietf.org/rfc/rfc4211.txt.

[RFC2817]
Rohit Khare and Scott Lawrence, "Upgrading to TLS Within HTTP/1.1", May
2000, Available from http://www.ietf.org/rfc/rfc2817.txt

[RFC2818]
Eric Rescorla, "HTTP Over TLS", May 2000, Available from
http://www.ietf/rfc/rfc2818.txt.

[RFC2945]
Tom Wu, "The SRP Authentication and Key Exchange System", September
2000, Available from http://www.ietf.org/rfc/rfc2945.txt.

http://www.openssl.org/~bodo/tls-cbc.txt
http://www.gnupg.org/gph/en/manual.pdf
http://www.cs.auckland.ac.nz/~pgut001/
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4211.txt
http://www.ietf.org/rfc/rfc2817.txt
http://www.ietf/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2945.txt

Bibliography 377

[RFC2986]
Magnus Nystrom and Burt Kaliski, "PKCS 10 v1.7: Certification
Request Syntax Specification", November 2000, Available from
http://www.ietf.org/rfc/rfc2986.txt.

[PKIX] D. Cooper, S. Santesson, S. Farrel, S. Boeyen, R. Housley, W.
Polk, "Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile", May 2008, available from
http://www.ietf.org/rfc/rfc5280.txt.

[RFC3749]
Scott Hollenbeck, "Transport Layer Security Protocol Compression Methods",
May 2004, available from http://www.ietf.org/rfc/rfc3749.txt.

[RFC3820]
Steven Tuecke, Von Welch, Doug Engert, Laura Pearlman, and Mary Thomp-
son, "Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Pro-
file", June 2004, available from http://www.ietf.org/rfc/rfc3820.

[RFC5746]
E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, "Transport Layer Secu-
rity (TLS) Renegotiation Indication Extension", February 2010, available from
http://www.ietf.org/rfc/rfc5746.

[TLSTKT]
Joseph Salowey, Hao Zhou, Pasi Eronen, Hannes Tschofenig, "Transport Layer
Security (TLS) Session Resumption without Server-Side State", January 2008,
available from http://www.ietf.org/rfc/rfc5077.

[PKCS12] RSA Laboratories, "PKCS 12 v1.0: Personal Information Exchange Syntax",
June 1999, Available from http://www.rsa.com.

[PKCS11] RSA Laboratories, "PKCS #11 Base Functionality v2.30: Cryptoki Draft 4",
July 2009, Available from http://www.rsa.com.

[RESCORLA]
Eric Rescorla, "SSL and TLS: Designing and Building Secure Systems", 2001

[SELKEY]
Arjen Lenstra and Eric Verheul, "Selecting Cryptographic Key Sizes", 2003,
available from http://www.win.tue.nl/~klenstra/key.pdf.

[SSL3] Alan Freier, Philip Karlton and Paul Kocher, "The SSL Protocol Version 3.0",
November 1996, Available from http://wp.netscape.com/eng/ssl3/draft302.txt.

[STEVENS]
Richard Stevens, "UNIX Network Programming, Volume 1", Prentice Hall
PTR, January 1998

[TLSEXT] Simon Blake-Wilson, Magnus Nystrom, David Hopwood, Jan Mikkelsen and
Tim Wright, "Transport Layer Security (TLS) Extensions", June 2003, Avail-
able from http://www.ietf.org/rfc/rfc3546.txt.

[TLSPGP] Nikos Mavrogiannopoulos, "Using OpenPGP keys for TLS authentication",
January 2011. Available from http://www.ietf.org/rfc/rfc6091.txt.

http://www.ietf.org/rfc/rfc2986.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc3749.txt
http://www.ietf.org/rfc/rfc3820
http://www.ietf.org/rfc/rfc5746
http://www.ietf.org/rfc/rfc5077
http://www.rsa.com
http://www.rsa.com
http://www.win.tue.nl/~klenstra/key.pdf
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc6091.txt

Bibliography 378

[TLSSRP] David Taylor, Trevor Perrin, Tom Wu and Nikos Mavrogiannopoulos,
"Using SRP for TLS Authentication", November 2007. Available from
http://www.ietf.org/rfc/rfc5054.txt.

[TLSPSK] Pasi Eronen and Hannes Tschofenig, "Pre-shared key Ciphersuites for TLS",
December 2005, Available from http://www.ietf.org/rfc/rfc4279.txt.

[TOMSRP]
Tom Wu, "The Stanford SRP Authentication Project", Available at
http://srp.stanford.edu/.

[WEGER] Arjen Lenstra and Xiaoyun Wang and Benne de Weger, "Colliding X.509
Certificates", Cryptology ePrint Archive, Report 2005/067, Available at
http://eprint.iacr.org/.

[ECRYPT]
European Network of Excellence in Cryptology II, "ECRYPT II
Yearly Report on Algorithms and Keysizes (2009-2010)", Available at
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf.

[RFC5056]
N. Williams, "On the Use of Channel Bindings to Secure Channels", November
2007, available from http://www.ietf.org/rfc/rfc5056.

[RFC5929]
J. Altman, N. Williams, L. Zhu, "Channel Bindings for TLS", July 2010, avail-
able from http://www.ietf.org/rfc/rfc5929.

http://www.ietf.org/rfc/rfc5054.txt
http://www.ietf.org/rfc/rfc4279.txt
http://srp.stanford.edu/
http://eprint.iacr.org/
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://www.ietf.org/rfc/rfc5056
http://www.ietf.org/rfc/rfc5929

Function and Data Index 379

Function and Data Index

A
alert-description->string 336
alert-get . 334
alert-level->string . 336
alert-send . 334
anonymous-client-credentials? 335
anonymous-server-credentials? 335

B
bye . 334

C
certificate-credentials? 335
certificate-request->string 336
certificate-status->string 336
certificate-type->string 336
certificate-verify->string 335
cipher->string . 336
cipher-suite->string . 333
close-request->string . 336
compression-method->string 336
connection-end->string . 336
credentials->string . 336

D
dh-parameters? . 335
digest->string . 336

E
error->string . 324, 335

G
gnutls-version . 334
gnutls_alert_get . 125
gnutls_alert_get_name . 125
gnutls_alert_send . 126
gnutls_alert_send_appropriate 125
gnutls_anon_allocate_client_credentials

. 126
gnutls_anon_allocate_server_credentials

. 126
gnutls_anon_free_client_credentials 126
gnutls_anon_free_server_credentials 126
gnutls_anon_set_params_function 127
gnutls_anon_set_server_dh_params 127
gnutls_anon_set_server_params_function . . 127
gnutls_auth_client_get_type 127
gnutls_auth_get_type . 127

gnutls_auth_server_get_type 128
gnutls_bye . 128
gnutls_certificate_activation_time_peers

. 129
gnutls_certificate_allocate_credentials

. 129
gnutls_certificate_client_get_request_

status . 129
gnutls_certificate_client_set_retrieve_

function . 129
gnutls_certificate_expiration_time_peers

. 130
gnutls_certificate_free_ca_names 130
gnutls_certificate_free_cas 130
gnutls_certificate_free_credentials 130
gnutls_certificate_free_crls 131
gnutls_certificate_free_keys 131
gnutls_certificate_get_openpgp_keyring . . 131
gnutls_certificate_get_ours 131
gnutls_certificate_get_peers 131
gnutls_certificate_get_x509_cas 132
gnutls_certificate_get_x509_crls 132
gnutls_certificate_send_x509_rdn_sequence

. 132
gnutls_certificate_server_set_request . . . 132
gnutls_certificate_server_set_retrieve_

function . 133
gnutls_certificate_set_dh_params 133
gnutls_certificate_set_openpgp_key 285
gnutls_certificate_set_openpgp_key_file

. 283
gnutls_certificate_set_openpgp_key_file2

. 283
gnutls_certificate_set_openpgp_key_mem . . 284
gnutls_certificate_set_openpgp_key_mem2

. 284
gnutls_certificate_set_openpgp_keyring_file

. 284
gnutls_certificate_set_openpgp_keyring_mem

. 285
gnutls_certificate_set_params_function . . 133
gnutls_certificate_set_retrieve_function

. 133
gnutls_certificate_set_rsa_export_params

. 134
gnutls_certificate_set_verify_flags 134
gnutls_certificate_set_verify_function . . 134
gnutls_certificate_set_verify_limits 135
gnutls_certificate_set_x509_crl 136
gnutls_certificate_set_x509_crl_file 135
gnutls_certificate_set_x509_crl_mem 135
gnutls_certificate_set_x509_key 137
gnutls_certificate_set_x509_key_file 136
gnutls_certificate_set_x509_key_mem 136

Function and Data Index 380

gnutls_certificate_set_x509_simple_pkcs12_

file . 137
gnutls_certificate_set_x509_simple_pkcs12_

mem . 138
gnutls_certificate_set_x509_trust 139
gnutls_certificate_set_x509_trust_file . . 139
gnutls_certificate_set_x509_trust_mem . . . 139
gnutls_certificate_type_get 140
gnutls_certificate_type_get_id 140
gnutls_certificate_type_get_name 140
gnutls_certificate_type_list 140
gnutls_certificate_type_set_priority 140
gnutls_certificate_verify_flags 30
gnutls_certificate_verify_peers 141
gnutls_certificate_verify_peers2 141
gnutls_check_version . 141
gnutls_cipher_decrypt . 142
gnutls_cipher_decrypt2 . 142
gnutls_cipher_deinit . 142
gnutls_cipher_encrypt . 143
gnutls_cipher_encrypt2 . 142
gnutls_cipher_get . 144
gnutls_cipher_get_block_size 143
gnutls_cipher_get_id . 143
gnutls_cipher_get_key_size 143
gnutls_cipher_get_name . 143
gnutls_cipher_init . 144
gnutls_cipher_list . 144
gnutls_cipher_set_priority 144
gnutls_cipher_suite_get_name 145
gnutls_cipher_suite_info 145
gnutls_compression_get . 146
gnutls_compression_get_id 145
gnutls_compression_get_name 145
gnutls_compression_list 146
gnutls_compression_set_priority 146
gnutls_credentials_clear 146
gnutls_credentials_set . 146
gnutls_crypto_bigint_register2 147
gnutls_crypto_cipher_register2 147
gnutls_crypto_digest_register2 148
gnutls_crypto_mac_register2 148
gnutls_crypto_pk_register2 149
gnutls_crypto_rnd_register2 149
gnutls_crypto_single_cipher_register2 . . . 149
gnutls_crypto_single_digest_register2 . . . 150
gnutls_crypto_single_mac_register2 150
gnutls_db_check_entry . 151
gnutls_db_get_ptr . 151
gnutls_db_remove_session 151
gnutls_db_set_cache_expiration 151
gnutls_db_set_ptr . 151
gnutls_db_set_remove_function 152
gnutls_db_set_retrieve_function 152
gnutls_db_set_store_function 152
gnutls_deinit . 152
gnutls_dh_get_group . 153
gnutls_dh_get_peers_public_bits 153

gnutls_dh_get_prime_bits 153
gnutls_dh_get_pubkey . 153
gnutls_dh_get_secret_bits 154
gnutls_dh_params_cpy . 154
gnutls_dh_params_deinit 154
gnutls_dh_params_export_pkcs3 154
gnutls_dh_params_export_raw 155
gnutls_dh_params_generate2 155
gnutls_dh_params_import_pkcs3 155
gnutls_dh_params_import_raw 156
gnutls_dh_params_init . 156
gnutls_dh_set_prime_bits 156
gnutls_error_is_fatal . 156
gnutls_error_to_alert . 157
gnutls_ext_register . 157
gnutls_extra_check_version 282
gnutls_fingerprint . 157
gnutls_free . 158
gnutls_global_deinit . 158
gnutls_global_init . 158
gnutls_global_init_extra 283
gnutls_global_set_log_function 158
gnutls_global_set_log_level 159
gnutls_global_set_mem_functions 159
gnutls_global_set_mutex 159
gnutls_handshake . 161
gnutls_handshake_get_last_in 160
gnutls_handshake_get_last_out 160
gnutls_handshake_set_max_packet_length . . 160
gnutls_handshake_set_post_client_hello_

function . 160
gnutls_handshake_set_private_extensions

. 161
gnutls_hash . 163
gnutls_hash_deinit . 162
gnutls_hash_fast . 162
gnutls_hash_get_len . 162
gnutls_hash_init . 162
gnutls_hash_output . 162
gnutls_hex_decode . 163
gnutls_hex_encode . 163
gnutls_hex2bin . 163
gnutls_hmac . 165
gnutls_hmac_deinit . 164
gnutls_hmac_fast . 164
gnutls_hmac_get_len . 164
gnutls_hmac_init . 164
gnutls_hmac_output . 165
gnutls_ia_allocate_client_credentials . . . 303
gnutls_ia_allocate_server_credentials . . . 303
gnutls_ia_enable . 304
gnutls_ia_endphase_send 304
gnutls_ia_extract_inner_secret 304
gnutls_ia_free_client_credentials 305
gnutls_ia_free_server_credentials 305
gnutls_ia_generate_challenge 305
gnutls_ia_get_client_avp_ptr 305
gnutls_ia_get_server_avp_ptr 305

Function and Data Index 381

gnutls_ia_handshake . 306
gnutls_ia_handshake_p . 306
gnutls_ia_permute_inner_secret 306
gnutls_ia_recv . 306
gnutls_ia_send . 307
gnutls_ia_set_client_avp_function 307
gnutls_ia_set_client_avp_ptr 308
gnutls_ia_set_server_avp_function 308
gnutls_ia_set_server_avp_ptr 309
gnutls_ia_verify_endphase 309
gnutls_init . 165
gnutls_kx_get . 166
gnutls_kx_get_id . 165
gnutls_kx_get_name . 166
gnutls_kx_list . 166
gnutls_kx_set_priority . 166
gnutls_mac_get . 167
gnutls_mac_get_id . 166
gnutls_mac_get_key_size 167
gnutls_mac_get_name . 167
gnutls_mac_list . 167
gnutls_mac_set_priority 167
gnutls_malloc . 168
gnutls_openpgp_crt_check_hostname 285
gnutls_openpgp_crt_deinit 285
gnutls_openpgp_crt_export 286
gnutls_openpgp_crt_get_auth_subkey 286
gnutls_openpgp_crt_get_creation_time 286
gnutls_openpgp_crt_get_expiration_time . . 286
gnutls_openpgp_crt_get_fingerprint 287
gnutls_openpgp_crt_get_key_id 287
gnutls_openpgp_crt_get_key_usage 287
gnutls_openpgp_crt_get_name 287
gnutls_openpgp_crt_get_pk_algorithm 288
gnutls_openpgp_crt_get_pk_dsa_raw 288
gnutls_openpgp_crt_get_pk_rsa_raw 288
gnutls_openpgp_crt_get_preferred_key_id

. 289
gnutls_openpgp_crt_get_revoked_status . . . 289
gnutls_openpgp_crt_get_subkey_count 289
gnutls_openpgp_crt_get_subkey_creation_time

. 289
gnutls_openpgp_crt_get_subkey_expiration_

time . 289
gnutls_openpgp_crt_get_subkey_fingerprint

. 290
gnutls_openpgp_crt_get_subkey_id 290
gnutls_openpgp_crt_get_subkey_idx 290
gnutls_openpgp_crt_get_subkey_pk_algorithm

. 290
gnutls_openpgp_crt_get_subkey_pk_dsa_raw

. 291
gnutls_openpgp_crt_get_subkey_pk_rsa_raw

. 291
gnutls_openpgp_crt_get_subkey_revoked_

status . 291
gnutls_openpgp_crt_get_subkey_usage 292
gnutls_openpgp_crt_get_version 292

gnutls_openpgp_crt_import 292
gnutls_openpgp_crt_init 292
gnutls_openpgp_crt_print 293
gnutls_openpgp_crt_set_preferred_key_id

. 293
gnutls_openpgp_crt_verify_ring 293
gnutls_openpgp_crt_verify_self 293
gnutls_openpgp_keyring_check_id 294
gnutls_openpgp_keyring_deinit 294
gnutls_openpgp_keyring_get_crt 294
gnutls_openpgp_keyring_get_crt_count 294
gnutls_openpgp_keyring_import 295
gnutls_openpgp_keyring_init 295
gnutls_openpgp_privkey_deinit 295
gnutls_openpgp_privkey_export 297
gnutls_openpgp_privkey_export_dsa_raw . . . 295
gnutls_openpgp_privkey_export_rsa_raw . . . 296
gnutls_openpgp_privkey_export_subkey_dsa_

raw . 296
gnutls_openpgp_privkey_export_subkey_rsa_

raw . 296
gnutls_openpgp_privkey_get_fingerprint . . 297
gnutls_openpgp_privkey_get_key_id 298
gnutls_openpgp_privkey_get_pk_algorithm

. 298
gnutls_openpgp_privkey_get_preferred_key_id

. 298
gnutls_openpgp_privkey_get_revoked_status

. 298
gnutls_openpgp_privkey_get_subkey_count

. 299
gnutls_openpgp_privkey_get_subkey_creation_

time . 299
gnutls_openpgp_privkey_get_subkey_

expiration_time . 299
gnutls_openpgp_privkey_get_subkey_

fingerprint . 299
gnutls_openpgp_privkey_get_subkey_id 300
gnutls_openpgp_privkey_get_subkey_idx . . . 300
gnutls_openpgp_privkey_get_subkey_pk_

algorithm . 300
gnutls_openpgp_privkey_get_subkey_revoked_

status . 300
gnutls_openpgp_privkey_import 301
gnutls_openpgp_privkey_init 301
gnutls_openpgp_privkey_sec_param 301
gnutls_openpgp_privkey_set_preferred_key_id

. 301
gnutls_openpgp_privkey_sign_hash 302
gnutls_openpgp_send_cert 168
gnutls_openpgp_set_recv_key_function 302
gnutls_pem_base64_decode 168
gnutls_pem_base64_decode_alloc 168
gnutls_pem_base64_encode 169
gnutls_pem_base64_encode_alloc 169
gnutls_perror . 169
gnutls_pk_algorithm_get_name 169
gnutls_pk_bits_to_sec_param 170

Function and Data Index 382

gnutls_pk_get_id . 170
gnutls_pk_get_name . 170
gnutls_pk_list . 170
gnutls_pkcs11_add_provider 170
gnutls_pkcs11_copy_secret_key 171
gnutls_pkcs11_copy_x509_crt 171
gnutls_pkcs11_copy_x509_privkey 171
gnutls_pkcs11_deinit . 172
gnutls_pkcs11_delete_url 172
gnutls_pkcs11_init . 172
gnutls_pkcs11_obj_deinit 172
gnutls_pkcs11_obj_export 173
gnutls_pkcs11_obj_export_url 172
gnutls_pkcs11_obj_get_info 173
gnutls_pkcs11_obj_get_type 173
gnutls_pkcs11_obj_import_url 173
gnutls_pkcs11_obj_init . 174
gnutls_pkcs11_obj_list_import_url 174
gnutls_pkcs11_privkey_deinit 174
gnutls_pkcs11_privkey_export_url 174
gnutls_pkcs11_privkey_get_info 175
gnutls_pkcs11_privkey_get_pk_algorithm . . 175
gnutls_pkcs11_privkey_import_url 175
gnutls_pkcs11_privkey_init 175
gnutls_pkcs11_set_pin_function 176
gnutls_pkcs11_set_token_function 176
gnutls_pkcs11_token_get_flags 176
gnutls_pkcs11_token_get_info 176
gnutls_pkcs11_token_get_mechanism 177
gnutls_pkcs11_token_get_url 177
gnutls_pkcs11_token_init 177
gnutls_pkcs11_token_set_pin 178
gnutls_pkcs12_bag_decrypt 216
gnutls_pkcs12_bag_deinit 216
gnutls_pkcs12_bag_encrypt 216
gnutls_pkcs12_bag_get_count 216
gnutls_pkcs12_bag_get_data 216
gnutls_pkcs12_bag_get_friendly_name 217
gnutls_pkcs12_bag_get_key_id 217
gnutls_pkcs12_bag_get_type 217
gnutls_pkcs12_bag_init . 217
gnutls_pkcs12_bag_set_crl 217
gnutls_pkcs12_bag_set_crt 218
gnutls_pkcs12_bag_set_data 218
gnutls_pkcs12_bag_set_friendly_name 218
gnutls_pkcs12_bag_set_key_id 218
gnutls_pkcs12_deinit . 219
gnutls_pkcs12_export . 219
gnutls_pkcs12_generate_mac 219
gnutls_pkcs12_get_bag . 219
gnutls_pkcs12_import . 220
gnutls_pkcs12_init . 220
gnutls_pkcs12_set_bag . 220
gnutls_pkcs12_verify_mac 220
gnutls_pkcs7_deinit . 221
gnutls_pkcs7_delete_crl 221
gnutls_pkcs7_delete_crt 221
gnutls_pkcs7_export . 221

gnutls_pkcs7_get_crl_count 221
gnutls_pkcs7_get_crl_raw 222
gnutls_pkcs7_get_crt_count 222
gnutls_pkcs7_get_crt_raw 222
gnutls_pkcs7_import . 222
gnutls_pkcs7_init . 223
gnutls_pkcs7_set_crl . 223
gnutls_pkcs7_set_crl_raw 223
gnutls_pkcs7_set_crt . 223
gnutls_pkcs7_set_crt_raw 223
gnutls_prf . 178
gnutls_prf_raw . 178
gnutls_priority_deinit . 179
gnutls_priority_init . 179
gnutls_priority_set . 180
gnutls_priority_set_direct 180
gnutls_privkey_decrypt_data 181
gnutls_privkey_deinit . 181
gnutls_privkey_get_pk_algorithm 181
gnutls_privkey_get_type 181
gnutls_privkey_import_openpgp 181
gnutls_privkey_import_pkcs11 182
gnutls_privkey_import_x509 182
gnutls_privkey_init . 182
gnutls_privkey_sign_data 182
gnutls_privkey_sign_hash 183
gnutls_protocol_get_id . 183
gnutls_protocol_get_name 183
gnutls_protocol_get_version 184
gnutls_protocol_list . 184
gnutls_protocol_set_priority 184
gnutls_psk_allocate_client_credentials . . 184
gnutls_psk_allocate_server_credentials . . 184
gnutls_psk_client_get_hint 185
gnutls_psk_free_client_credentials 185
gnutls_psk_free_server_credentials 185
gnutls_psk_netconf_derive_key 185
gnutls_psk_server_get_username 186
gnutls_psk_set_client_credentials 186
gnutls_psk_set_client_credentials_function

. 186
gnutls_psk_set_params_function 186
gnutls_psk_set_server_credentials_file . . 187
gnutls_psk_set_server_credentials_function

. 187
gnutls_psk_set_server_credentials_hint . . 187
gnutls_psk_set_server_dh_params 187
gnutls_psk_set_server_params_function . . . 188
gnutls_pubkey_deinit . 188
gnutls_pubkey_export . 188
gnutls_pubkey_get_key_id 188
gnutls_pubkey_get_key_usage 189
gnutls_pubkey_get_pk_algorithm 189
gnutls_pubkey_get_pk_dsa_raw 189
gnutls_pubkey_get_pk_rsa_raw 189
gnutls_pubkey_get_preferred_hash_algorithm

. 190
gnutls_pubkey_get_verify_algorithm 190

Function and Data Index 383

gnutls_pubkey_import . 192
gnutls_pubkey_import_dsa_raw 190
gnutls_pubkey_import_openpgp 191
gnutls_pubkey_import_pkcs11 191
gnutls_pubkey_import_pkcs11_url 191
gnutls_pubkey_import_privkey 191
gnutls_pubkey_import_rsa_raw 192
gnutls_pubkey_import_x509 192
gnutls_pubkey_init . 192
gnutls_pubkey_set_key_usage 193
gnutls_pubkey_verify_data 193
gnutls_pubkey_verify_hash 193
gnutls_record_check_pending 193
gnutls_record_disable_padding 194
gnutls_record_get_direction 194
gnutls_record_get_max_size 194
gnutls_record_recv . 194
gnutls_record_send . 195
gnutls_record_set_max_size 195
gnutls_rehandshake . 196
gnutls_rnd . 196
gnutls_rsa_export_get_modulus_bits 196
gnutls_rsa_export_get_pubkey 197
gnutls_rsa_params_cpy . 197
gnutls_rsa_params_deinit 197
gnutls_rsa_params_export_pkcs1 197
gnutls_rsa_params_export_raw 198
gnutls_rsa_params_generate2 198
gnutls_rsa_params_import_pkcs1 198
gnutls_rsa_params_import_raw 199
gnutls_rsa_params_init . 199
gnutls_safe_renegotiation_status 199
gnutls_sec_param_get_name 199
gnutls_sec_param_to_pk_bits 200
gnutls_server_name_get . 200
gnutls_server_name_set . 200
gnutls_session_channel_binding 201
gnutls_session_enable_compatibility_mode

. 201
gnutls_session_get_data 202
gnutls_session_get_data2 201
gnutls_session_get_id . 202
gnutls_session_get_ptr . 202
gnutls_session_is_resumed 202
gnutls_session_set_data 203
gnutls_session_set_ptr . 203
gnutls_session_ticket_enable_client 203
gnutls_session_ticket_enable_server 203
gnutls_session_ticket_key_generate 204
gnutls_set_default_export_priority 204
gnutls_set_default_priority 204
gnutls_sign_algorithm_get_name 204
gnutls_sign_algorithm_get_requested 205
gnutls_sign_callback_get 205
gnutls_sign_callback_set 205
gnutls_sign_get_id . 206
gnutls_sign_get_name . 206
gnutls_sign_list . 206

gnutls_srp_allocate_client_credentials . . 206
gnutls_srp_allocate_server_credentials . . 206
gnutls_srp_base64_decode 207
gnutls_srp_base64_decode_alloc 207
gnutls_srp_base64_encode 208
gnutls_srp_base64_encode_alloc 207
gnutls_srp_free_client_credentials 208
gnutls_srp_free_server_credentials 208
gnutls_srp_server_get_username 208
gnutls_srp_set_client_credentials 209
gnutls_srp_set_client_credentials_function

. 208
gnutls_srp_set_prime_bits 209
gnutls_srp_set_server_credentials_file . . 209
gnutls_srp_set_server_credentials_function

. 210
gnutls_srp_verifier . 210
gnutls_strerror . 211
gnutls_strerror_name . 211
gnutls_supplemental_get_name 211
gnutls_transport_get_ptr 212
gnutls_transport_get_ptr2 211
gnutls_transport_set_errno 212
gnutls_transport_set_errno_function 212
gnutls_transport_set_global_errno 212
gnutls_transport_set_lowat 213
gnutls_transport_set_ptr 213
gnutls_transport_set_ptr2 213
gnutls_transport_set_pull_function 213
gnutls_transport_set_push_function 214
gnutls_transport_set_vec_push_function . . 214
gnutls_x509_crl_check_issuer 224
gnutls_x509_crl_deinit . 224
gnutls_x509_crl_export . 224
gnutls_x509_crl_get_authority_key_id 224
gnutls_x509_crl_get_crt_count 225
gnutls_x509_crl_get_crt_serial 225
gnutls_x509_crl_get_dn_oid 225
gnutls_x509_crl_get_extension_data 226
gnutls_x509_crl_get_extension_info 226
gnutls_x509_crl_get_extension_oid 226
gnutls_x509_crl_get_issuer_dn 227
gnutls_x509_crl_get_issuer_dn_by_oid 227
gnutls_x509_crl_get_next_update 228
gnutls_x509_crl_get_number 228
gnutls_x509_crl_get_raw_issuer_dn 228
gnutls_x509_crl_get_signature 229
gnutls_x509_crl_get_signature_algorithm

. 228
gnutls_x509_crl_get_this_update 229
gnutls_x509_crl_get_version 229
gnutls_x509_crl_import . 229
gnutls_x509_crl_init . 229
gnutls_x509_crl_print . 230
gnutls_x509_crl_privkey_sign 230
gnutls_x509_crl_set_authority_key_id 230
gnutls_x509_crl_set_crt 231
gnutls_x509_crl_set_crt_serial 231

Function and Data Index 384

gnutls_x509_crl_set_next_update 231
gnutls_x509_crl_set_number 231
gnutls_x509_crl_set_this_update 232
gnutls_x509_crl_set_version 232
gnutls_x509_crl_sign . 232
gnutls_x509_crl_sign2 . 232
gnutls_x509_crl_verify . 233
gnutls_x509_crq_deinit . 233
gnutls_x509_crq_export . 233
gnutls_x509_crq_get_attribute_by_oid 234
gnutls_x509_crq_get_attribute_data 234
gnutls_x509_crq_get_attribute_info 234
gnutls_x509_crq_get_basic_constraints . . . 235
gnutls_x509_crq_get_challenge_password . . 235
gnutls_x509_crq_get_dn . 236
gnutls_x509_crq_get_dn_by_oid 235
gnutls_x509_crq_get_dn_oid 236
gnutls_x509_crq_get_extension_by_oid 237
gnutls_x509_crq_get_extension_data 237
gnutls_x509_crq_get_extension_info 237
gnutls_x509_crq_get_key_id 238
gnutls_x509_crq_get_key_purpose_oid 238
gnutls_x509_crq_get_key_rsa_raw 239
gnutls_x509_crq_get_key_usage 239
gnutls_x509_crq_get_pk_algorithm 239
gnutls_x509_crq_get_subject_alt_name 240
gnutls_x509_crq_get_subject_alt_othername_

oid . 240
gnutls_x509_crq_get_version 241
gnutls_x509_crq_import . 241
gnutls_x509_crq_init . 241
gnutls_x509_crq_print . 241
gnutls_x509_crq_privkey_sign 242
gnutls_x509_crq_set_attribute_by_oid 242
gnutls_x509_crq_set_basic_constraints . . . 242
gnutls_x509_crq_set_challenge_password . . 243
gnutls_x509_crq_set_dn_by_oid 243
gnutls_x509_crq_set_key 244
gnutls_x509_crq_set_key_purpose_oid 243
gnutls_x509_crq_set_key_rsa_raw 244
gnutls_x509_crq_set_key_usage 244
gnutls_x509_crq_set_pubkey 214
gnutls_x509_crq_set_subject_alt_name 244
gnutls_x509_crq_set_version 245
gnutls_x509_crq_sign . 245
gnutls_x509_crq_sign2 . 245
gnutls_x509_crt_check_hostname 246
gnutls_x509_crt_check_issuer 246
gnutls_x509_crt_check_revocation 246
gnutls_x509_crt_cpy_crl_dist_points 246
gnutls_x509_crt_deinit . 247
gnutls_x509_crt_export . 247
gnutls_x509_crt_get_activation_time 247
gnutls_x509_crt_get_authority_key_id 247
gnutls_x509_crt_get_basic_constraints . . . 248
gnutls_x509_crt_get_ca_status 248
gnutls_x509_crt_get_crl_dist_points 248
gnutls_x509_crt_get_dn . 250

gnutls_x509_crt_get_dn_by_oid 249
gnutls_x509_crt_get_dn_oid 249
gnutls_x509_crt_get_expiration_time 250
gnutls_x509_crt_get_extension_by_oid 250
gnutls_x509_crt_get_extension_data 251
gnutls_x509_crt_get_extension_info 251
gnutls_x509_crt_get_extension_oid 252
gnutls_x509_crt_get_fingerprint 252
gnutls_x509_crt_get_issuer 255
gnutls_x509_crt_get_issuer_alt_name 253
gnutls_x509_crt_get_issuer_alt_name2 252
gnutls_x509_crt_get_issuer_alt_othername_

oid . 253
gnutls_x509_crt_get_issuer_dn 255
gnutls_x509_crt_get_issuer_dn_by_oid 254
gnutls_x509_crt_get_issuer_dn_oid 254
gnutls_x509_crt_get_issuer_unique_id 255
gnutls_x509_crt_get_key_id 256
gnutls_x509_crt_get_key_purpose_oid 256
gnutls_x509_crt_get_key_usage 256
gnutls_x509_crt_get_pk_algorithm 257
gnutls_x509_crt_get_pk_dsa_raw 257
gnutls_x509_crt_get_pk_rsa_raw 257
gnutls_x509_crt_get_preferred_hash_

algorithm . 258
gnutls_x509_crt_get_proxy 258
gnutls_x509_crt_get_raw_dn 258
gnutls_x509_crt_get_raw_issuer_dn 259
gnutls_x509_crt_get_serial 259
gnutls_x509_crt_get_signature 259
gnutls_x509_crt_get_signature_algorithm

. 259
gnutls_x509_crt_get_subject 262
gnutls_x509_crt_get_subject_alt_name 260
gnutls_x509_crt_get_subject_alt_name2 . . . 260
gnutls_x509_crt_get_subject_alt_othername_

oid . 261
gnutls_x509_crt_get_subject_key_id 261
gnutls_x509_crt_get_subject_unique_id . . . 261
gnutls_x509_crt_get_verify_algorithm 262
gnutls_x509_crt_get_version 262
gnutls_x509_crt_import . 263
gnutls_x509_crt_import_pkcs11 215
gnutls_x509_crt_import_pkcs11_url 214
gnutls_x509_crt_init . 263
gnutls_x509_crt_list_import 263
gnutls_x509_crt_list_import_pkcs11 215
gnutls_x509_crt_list_verify 263
gnutls_x509_crt_print . 264
gnutls_x509_crt_privkey_sign 264
gnutls_x509_crt_set_activation_time 265
gnutls_x509_crt_set_authority_key_id 265
gnutls_x509_crt_set_basic_constraints . . . 265
gnutls_x509_crt_set_ca_status 265
gnutls_x509_crt_set_crl_dist_points 266
gnutls_x509_crt_set_crl_dist_points2 266
gnutls_x509_crt_set_crq 267
gnutls_x509_crt_set_crq_extensions 266

Function and Data Index 385

gnutls_x509_crt_set_dn_by_oid 267
gnutls_x509_crt_set_expiration_time 267
gnutls_x509_crt_set_extension_by_oid 267
gnutls_x509_crt_set_issuer_dn_by_oid 268
gnutls_x509_crt_set_key 269
gnutls_x509_crt_set_key_purpose_oid 268
gnutls_x509_crt_set_key_usage 269
gnutls_x509_crt_set_proxy 269
gnutls_x509_crt_set_proxy_dn 269
gnutls_x509_crt_set_pubkey 215
gnutls_x509_crt_set_serial 270
gnutls_x509_crt_set_subject_alt_name 270
gnutls_x509_crt_set_subject_alternative_

name . 270
gnutls_x509_crt_set_subject_key_id 271
gnutls_x509_crt_set_version 271
gnutls_x509_crt_sign . 272
gnutls_x509_crt_sign2 . 271
gnutls_x509_crt_verify . 272
gnutls_x509_crt_verify_data 272
gnutls_x509_crt_verify_hash 272
gnutls_x509_dn_deinit . 273
gnutls_x509_dn_export . 273
gnutls_x509_dn_get_rdn_ava 273
gnutls_x509_dn_import . 274
gnutls_x509_dn_init . 274
gnutls_x509_dn_oid_known 274
gnutls_x509_privkey_cpy 274
gnutls_x509_privkey_deinit 274
gnutls_x509_privkey_export 276
gnutls_x509_privkey_export_dsa_raw 275
gnutls_x509_privkey_export_pkcs8 275
gnutls_x509_privkey_export_rsa_raw 276
gnutls_x509_privkey_export_rsa_raw2 275
gnutls_x509_privkey_fix 277
gnutls_x509_privkey_generate 277
gnutls_x509_privkey_get_key_id 277
gnutls_x509_privkey_get_pk_algorithm 278
gnutls_x509_privkey_import 279
gnutls_x509_privkey_import_dsa_raw 278
gnutls_x509_privkey_import_pkcs8 278
gnutls_x509_privkey_import_rsa_raw 279
gnutls_x509_privkey_import_rsa_raw2 279
gnutls_x509_privkey_init 280
gnutls_x509_privkey_sec_param 280
gnutls_x509_privkey_sign_data 280
gnutls_x509_privkey_sign_hash 281
gnutls_x509_privkey_verify_data 281
gnutls_x509_rdn_get . 282
gnutls_x509_rdn_get_by_oid 281
gnutls_x509_rdn_get_oid 282

H
handshake . 334
handshake-description->string 336

I
import-openpgp-certificate 337
import-openpgp-keyring . 337
import-openpgp-private-key 337
import-x509-certificate 330
import-x509-private-key 330

K
key-usage->string . 335
kx->string . 336

M
mac->string . 336
make-anonymous-client-credentials 332
make-anonymous-server-credentials 332
make-certificate-credentials 332
make-dh-parameters . 332
make-psk-client-credentials 330
make-psk-server-credentials 330
make-rsa-parameters 323, 332
make-session . 334

O
openpgp-certificate-algorithm 337
openpgp-certificate-fingerprint 337
openpgp-certificate-fingerprint! 337
openpgp-certificate-format->string 337
openpgp-certificate-id . 337
openpgp-certificate-id! 337
openpgp-certificate-name 337
openpgp-certificate-names 337
openpgp-certificate-usage 337
openpgp-certificate-version 337
openpgp-certificate? . 338
openpgp-keyring-contains-key-id? 337
openpgp-keyring? . 338
openpgp-private-key? . 338

P
params->string . 336
peer-certificate-status 330
pk-algorithm->string . 335
pkcs1-export-rsa-parameters 323, 332
pkcs1-import-rsa-parameters 332
pkcs3-export-dh-parameters 332
pkcs3-import-dh-parameters 332
pkcs8-import-x509-private-key 330
protocol->string . 336
psk-client-credentials? 335
psk-key-format->string . 335
psk-server-credentials? 335

Function and Data Index 386

R
record-receive! . 324, 333
record-send . 324, 333
rehandshake . 334
rsa-parameters? . 335

S
server-session-psk-username 330
session-authentication-type 334
session-certificate-type 334
session-cipher . 323, 334
session-client-authentication-type 334
session-compression-method 334
session-kx . 334
session-mac . 334
session-our-certificate-chain 333
session-peer-certificate-chain 333
session-protocol . 334
session-record-port 324, 332
session-server-authentication-type 334
session? . 335
set-anonymous-server-dh-parameters! 332
set-certificate-credentials-dh-parameters!

. 331
set-certificate-credentials-openpgp-keys!

. 337
set-certificate-credentials-rsa-export-

parameters! . 331
set-certificate-credentials-verify-flags!

. 331
set-certificate-credentials-verify-limits!

. 331
set-certificate-credentials-x509-crl-data!

. 331
set-certificate-credentials-x509-crl-file!

. 331
set-certificate-credentials-x509-key-data!

. 331
set-certificate-credentials-x509-key-files!

. 331
set-certificate-credentials-x509-keys! . . 331
set-certificate-credentials-x509-trust-

data! . 331

set-certificate-credentials-x509-trust-

file! . 331
set-log-level! . 329
set-log-procedure! . 329
set-psk-client-credentials! 330
set-psk-server-credentials-file! 330
set-server-session-certificate-request!

. 333
set-session-certificate-type-priority! . . 333
set-session-cipher-priority! 333
set-session-compression-method-priority!

. 333
set-session-credentials! 333
set-session-default-export-priority! 333
set-session-default-priority! 333
set-session-dh-prime-bits! 332
set-session-kx-priority! 333
set-session-mac-priority! 333
set-session-protocol-priority! 333
set-session-transport-fd! 324, 332
set-session-transport-port! 324, 332
sign-algorithm->string . 335
srp-client-credentials? 335
srp-server-credentials? 335

X
x509-certificate-authority-key-id 329
x509-certificate-dn . 330
x509-certificate-dn-oid 330
x509-certificate-format->string 336
x509-certificate-issuer-dn 330
x509-certificate-issuer-dn-oid 330
x509-certificate-key-id 329
x509-certificate-key-usage 329
x509-certificate-matches-hostname? 330
x509-certificate-public-key-algorithm . . . 329
x509-certificate-signature-algorithm 329
x509-certificate-subject-alternative-name

. 329
x509-certificate-subject-key-id 329
x509-certificate-version 329
x509-certificate? . 335
x509-private-key? . 334
x509-subject-alternative-name->string . . . 335

Concept Index 387

Concept Index

A
Abstract types . 37
Alert protocol . 11
Anonymous authentication . 23

B
Bad record MAC . 18

C
Callback functions . 7
Certificate authentication . 28
Certificate requests . 31
certtool . 111
Channel Bindings . 109
Ciphersuites . 317
Client Certificate authentication 14
Compression algorithms . 10
constant . 322
Contributing . 3

D
debug server . 119
Digital signatures . 37
Download . 2

E
enumerate . 322
Error codes . 309
errors . 324
Example programs . 42
exceptions . 324
Exporting Keying Material 109

F
FDL, GNU Free Documentation License 349
Function reference . 125

G
gnutls-cli . 116
gnutls-cli-debug . 118
gnutls-error . 324
GnuTLS-extra functions . 282
gnutls-serv . 118
GPL, GNU General Public License 364

H
Hacking . 3
Handshake protocol . 11
homogeneous vector . 323
HTTPS server . 119

I
Inner Application (TLS/IA) functions 302
Installation . 2
Internal architecture . 339

K
key sizes . 16
Keying Material Exporters 109

L
LGPL, GNU Lesser General Public License . . . 356
License, GNU GPL . 364
License, GNU LGPL . 356

M
Maximum fragment length . 16

N
Netconf . 117

O
OpenPGP functions . 283
OpenPGP Keys . 21, 31
OpenPGP Server . 88
OpenSSL . 109

P
p11tool . 123
PCT . 18
PKCS #10 . 31
PKCS #11 tokens . 33
PKCS #12 . 31
PSK authentication . 24
PSK client . 117
PSK server . 122
psktool . 122

R
Record padding . 18

Concept Index 388

Record protocol . 9
renegotiation . 18
Reporting Bugs . 3
Resuming sessions . 15

S
Server name indication . 16
Session Tickets . 16
SRFI-4 . 323
SRP authentication . 23
srptool . 123
SSL 2 . 17
Symmetric encryption algorithms 10

T
Ticket . 16
TLS Extensions . 15, 16
TLS Inner Application (TLS/IA) functions 302
TLS Layers . 8
Transport protocol . 9

V
Verifying certificate paths . 30

X
X.509 certificates . 21, 28
X.509 Functions . 215

	Preface
	Getting Help
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing

	The Library
	General Idea
	Error Handling
	Memory Handling
	Callback Functions

	Introduction to TLS
	TLS Layers
	The Transport Layer
	The TLS Record Protocol
	Encryption Algorithms Used in the Record Layer
	Compression Algorithms Used in the Record Layer
	Weaknesses and Countermeasures

	The TLS Alert Protocol
	The TLS Handshake Protocol
	TLS Cipher Suites
	Priority strings
	Client Authentication
	Resuming Sessions
	Resuming Internals

	TLS Extensions
	Maximum Fragment Length Negotiation
	Server Name Indication
	Session Tickets

	Selecting Cryptographic Key Sizes
	On SSL 2 and Older Protocols
	On Record Padding
	Safe Renegotiation

	Authentication Methods
	Certificate Authentication
	Authentication Using X.509 Certificates
	Authentication Using OpenPGP Keys
	Using Certificate Authentication

	Anonymous Authentication
	Authentication using SRP
	Authentication using PSK
	Authentication and Credentials
	Parameters Stored in Credentials

	More on Certificate Authentication
	The X.509 Trust Model
	X.509 Certificates
	Verifying X.509 Certificate Paths
	PKCS #10 Certificate Requests
	PKCS #12 Structures

	The OpenPGP Trust Model
	OpenPGP Keys
	Verifying an OpenPGP Key

	PKCS #11 tokens
	Introduction
	Initialization
	Reading Objects
	Writing Objects
	Using a PKCS #11 token with TLS

	Abstract data types
	Digital Signatures
	Trading Security for Interoperability

	How To Use TLS in Application Protocols
	Separate Ports
	Upward Negotiation

	How To Use GnuTLS in Applications
	Preparation
	Headers
	Initialization
	Version Check
	Debugging
	Building the Source

	Multi-Threaded Applications
	Client Examples
	Simple Client Example with Anonymous Authentication
	Simple Client Example with X.509 Certificate Support
	Obtaining Session Information
	Verifying Peer's Certificate
	Using a Callback to Select the Certificate to Use
	Using a PKCS #11 token with TLS
	Client with Resume Capability Example
	Simple Client Example with SRP Authentication
	Simple Client Example using the C++ API
	Helper Function for TCP Connections

	Server Examples
	Echo Server with X.509 Authentication
	Echo Server with OpenPGP Authentication
	Echo Server with SRP Authentication
	Echo Server with Anonymous Authentication

	Miscellaneous Examples
	Checking for an Alert
	X.509 Certificate Parsing Example
	Certificate Request Generation
	PKCS #12 Structure Generation

	Compatibility with the OpenSSL Library
	Keying Material Exporters
	Channel Bindings

	Included Programs
	Invoking certtool
	Invoking gnutls-cli
	Example client PSK connection

	Invoking gnutls-cli-debug
	Invoking gnutls-serv
	Setting Up a Test HTTPS Server
	Example server PSK connection

	Invoking psktool
	Invoking srptool
	Invoking p11tool

	Function Reference
	Core Functions
	X.509 Certificate Functions
	GnuTLS-extra Functions
	OpenPGP Functions
	TLS Inner Application (TLS/IA) Functions
	Error Codes and Descriptions

	All the Supported Ciphersuites in GnuTLS
	Guile Bindings
	Guile Preparations
	Guile API Conventions
	Enumerates and Constants
	Procedure Names
	Representation of Binary Data
	Input and Output
	Exception Handling

	Guile Examples
	Anonymous Authentication Guile Example
	OpenPGP Authentication Guile Example
	Importing OpenPGP Keys Guile Example

	Guile Reference
	Core Interface
	Extra Interface

	Internal Architecture of GnuTLS
	The TLS Protocol
	TLS Handshake Protocol
	TLS Authentication Methods
	TLS Extension Handling
	Adding a New TLS Extension

	Certificate Handling
	Cryptographic Backend
	Cryptographic Library layer
	External cryptography provider
	Override specific algorithms
	Override parts of the backend

	Copying Information
	GNU Free Documentation License
	GNU Lesser General Public License
	GNU General Public License

	Bibliography
	Function and Data Index
	Concept Index

