
VIP Quick Reference Card
(Based on VIP 3.5 in GNU Emacs 18)

Loading VIP

Just type M-x vip-mode followed by RET

VIP Modes

VIP has three modes: emacs mode, vi mode and insert mode. Mode
line tells you which mode you are in. In emacs mode you can do all
the normal GNU Emacs editing. This card explains only vi mode
and insert mode. GNU Emacs Reference Card explains emacs
mode. You can switch modes as follows.

from emacs mode to vi mode C-z

from vi mode to emacs mode C-z

from vi mode to insert mode i, I, a, A, o, O or C-o

from insert mode to vi mode ESC

If you wish to be in vi mode just after you startup Emacs, include
the line:

(add-hook ’emacs-startup-hook ’vip-mode)

in your .emacs file. Or, you can put the following alias in your
.cshrc file.

alias vip ’emacs \!* -f vip-mode’

Insert Mode

Insert mode is like emacs mode except for the following.

go back to vi mode ESC

delete previous character C-h

delete previous word C-w

emulate ESC key in emacs mode C-z

The rest of this card explains commands in vi mode.

Getting Information on VIP

Execute info command by typing M-x info and select menu item
vip. Also:

describe function attached to the key x C-h k x

Leaving Emacs

suspend Emacs X Z or :st

exit Emacs permanently Z Z or X C or :q

Error Recovery

abort partially typed or executing command C-g

redraw messed up screen C-l

recover a file lost by a system crash M-x recover-file

restore a buffer to its original contents M-x revert-buffer

c© 2019 Free Software Foundation, Inc. Permissions on back.

2

Counts

Most commands in vi mode accept a count which can be supplied
as a prefix to the commands. In most cases, if a count is given, the
command is executed that many times. E.g., 5 d d deletes 5 lines.

Registers

There are 26 registers (a to z) that can store texts and marks. You
can append a text at the end of a register (say x) by specifying the
register name in capital letter (say X). There are also 9 read only
registers (1 to 9) that store up to 9 previous changes. We will use
x to denote a register.

Entering Insert Mode

insert at point i

append after cursor a

insert before first non-white I

append at end of line A

open line below o

open line above O

open line at point C-o

Buffers and Windows

move cursor to next window C-n

delete current window X 0

delete other windows X 1

split current window into two windows X 2

show current buffer in two windows X 3

switch to a buffer in the current window s buffer
switch to a buffer in another window S buffer
kill a buffer K

list existing buffers X B

Files

visit file in the current window v file or :e file
visit file in another window V file
save buffer to the associated file X S

write buffer to a specified file X W

insert a specified file at point X I

get information on the current file g or :f

run the directory editor X d

Viewing the Buffer

scroll to next screen SPC or C-f

scroll to previous screen RET or C-b

scroll down half screen C-d

scroll up half screen C-u

scroll down one line C-e

scroll up one line C-y

put current line on the home line z H or z RET

put current line on the middle line z M or z .

put current line on the last line z L or z -

3

Marking and Returning

mark point in register x m x
set mark at buffer beginning m <

set mark at buffer end m >

set mark at point m .

jump to mark m ,

exchange point and mark ‘ ‘

... and skip to first non-white on line ’ ’

go to mark x ‘ x
... and skip to first non-white on line ’ x

Macros

start remembering keyboard macro X (

finish remembering keyboard macro X)

call last keyboard macro *

execute macro stored in register x @ x

Motion Commands

go backward one character h

go forward one character l

next line keeping the column j

previous line keeping the column k

next line at first non-white +

previous line at first non-white -

beginning of line 0

first non-white on line ^

end of line $

go to n-th column on line n |

go to n-th line n G

go to last line G

find matching parenthesis for (), {} and [] %

go to home window line H

go to middle window line M

go to last window line L

Words, Sentences, Paragraphs

forward word w or W

backward word b or B

end of word e or E

In the case of capital letter commands, a word is delimited by a
non-white character.

forward sentence)

backward sentence (

forward paragraph }

backward paragraph {

Find Characters on the Line

find c forward on line f c
find c backward on line F c
up to c forward on line t c
up to c backward on line T c
repeat previous f, F, t or T ;

... in the opposite direction ,

4

VIP Quick Reference Card

Searching and Replacing

search forward for pat / pat
search backward for pat ? pat
repeat previous search n

... in the opposite direction N

incremental search C-s

reverse incremental search C-r

replace R

query replace Q

replace a character by another character c r c

Modifying Commands

The delete (yank, change) commands explained below accept a
motion command as their argument and delete (yank, change) the
region determined by the motion command. Motion commands
are classified into point commands and line commands. In the case
of line commands, whole lines will be affected by the command.
Motion commands will be represented by m below.

The point commands are as follows:

h l 0 ^ $ w W b B e E () / ? ‘ f F t T % ; ,

The line commands are as follows:

j k + - H M L { } G ’

Delete/Yank/Change Commands

delete yank change
region determined by m d m y m c m
... into register x " x d m " x y m " x c m
a line d d Y or y y c c

current region d r y r c r

expanded region d R y R c R

to end of line D y $ c $

a character after point x y l c l

a character before point DEL y h c h

Put Back Commands

Deleted/yanked/changed text can be put back by the following
commands.

Put back at point/above line P

... from register x " x P

put back after point/below line p

... from register x " x p

Repeating and Undoing Modifications

undo last change u or :und

repeat last change . (dot)

Undo is undoable by u and repeatable by .. For example, u...
will undo 4 previous changes. A . after 5dd is equivalent to 5dd,
while 3. after 5dd is equivalent to 3dd.

5

Miscellaneous Commands

shift left shift right filter shell command indent
region < m > m ! m shell-com = m
line < < > > ! ! shell-com = =

emulate ESC/C-h in emacs mode ESC/C-h
emulate C-c/C-x in emacs mode C/X

join lines J

lowercase region # c m
uppercase region # C m
execute last keyboard macro on each line in the
region

g m

insert specified string for each line in the region # q m
check spelling of the words in the region # s m

Differences from Vi

In VIP some keys behave rather differently from Vi. The table
below lists such keys, and you can get the effect of typing these
keys by typing the corresponding keys in the VIP column.

Vi VIP
forward character SPC l

backward character C-h h

next line at first non-white RET +

delete previous character X DEL

get information on file C-g g

substitute characters s x i

substitute line S c c

change to end of line C or R c $

(Strictly speaking, C and R behave slightly differently in Vi.)

Customization

By default, search is case sensitive. You can change this by inclu-
ding the following line in your .vip file.

(setq vip-case-fold-search t)

variable default value
vip-search-wrap-around t

vip-case-fold-search nil

vip-re-search nil

vip-re-replace nil

vip-re-query-replace nil

vip-open-with-indent nil

vip-help-in-insert-mode nil

vip-shift-width 8

vip-tags-file-name "TAGS"

Include (some of) following lines in your .vip file to restore Vi key
bindings.

(define-key vip-mode-map "\C-g" ’vip-info-on-file)

(define-key vip-mode-map "\C-h" ’vip-backward-char)

(define-key vip-mode-map "\C-m" ’vip-next-line-at-bol)

(define-key vip-mode-map " " ’vip-forward-char)

(define-key vip-mode-map "g" ’vip-keyboard-quit)

(define-key vip-mode-map "s" ’vip-substitute)

(define-key vip-mode-map "C" ’vip-change-to-eol)

(define-key vip-mode-map "R" ’vip-change-to-eol)

(define-key vip-mode-map "S" ’vip-substitute-line)

(define-key vip-mode-map "X" ’vip-delete-backward-char)

6

Ex Commands in VIP
In vi mode, an Ex command is entered by typing:

: ex-command RET

Ex Addresses

current line . next line with pat / pat /

line n n previous line with pat ? pat ?

last line $ n line before a a - n
next line + a through b a , b
previous line - line marked with x ’ x
entire buffer % previous context ’ ’

Addresses can be specified in front of a command. For example,

:.,.+10m$

moves 11 lines below current line to the end of buffer.

Ex Commands

mark lines matching pat and execute cmds on
these lines

:g /pat/ cmds

mark lines not matching pat and execute cmds
on these lines

:v /pat/ cmds

move specified lines after addr :m addr
copy specified lines after addr :co (or :t) addr
delete specified lines [into register x] :d [x]
yank specified lines [into register x] :y [x]
put back text [from register x] :pu [x]

substitute repl for first string on line matching
pat

:s /pat/repl/

repeat last substitution :&

repeat previous substitute with previous search
pattern as pat

:~

read in a file :r file
read in the output of a shell command :r! command
write out specified lines into file :w file
write out specified lines at the end of file :w>> file
write out and then quit :wq file

define a macro x that expands to cmd :map x cmd
remove macro expansion associated with x :unma x

print line number :=

print version number of VIP :ve

shift specified lines to the right :>

shift specified lines to the left :<

join lines :j

mark specified line to register x :k x
set a variable’s value :se

run a subshell in a window :sh

execute shell command command :! command
find first definition of tag tag :ta tag

Copyright c© 2019 Free Software Foundation, Inc.

For VIP 3.5 with GNU Emacs version 18

Written by Masahiko Sato,

using refcard layout designed by Stephen Gildea.

Released under the terms of the GNU General Public License version 3 or later.

For more Emacs documentation, and the TEX source for this card, see the Emacs

distribution, or https://www.gnu.org/software/emacs

7

